优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质
初中数学

如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.

(1)求证:
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.

  • 题型:未知
  • 难度:未知

如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.其中正确结论的序号是       

  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E。

(1)求AC、BC的长;
(2)若AC=3,连接BD,求图中阴影部分的面积(取3.14)。

  • 题型:未知
  • 难度:未知

如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.

(1)填空:AD=  (cm),DC=  (cm);
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
(参考数据:sin75°=,sin15°=

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.动线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时运动停止.过点E作EF∥AC交AB于点F(当点E与点C重合时,EF与CA重合),连接DF,设运动的时间为t秒(t≥0).

(1)直接写出用含t的代数式表示线段BE、EF的长;
(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;
(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.

(1)求点F的坐标;
(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,边AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.

(1)直接写出 D,E 两点的坐标,D(         ),E(          
(2)求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?
(3)当t为何值时,DP平分∠EDA?
(4)当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.

  • 题型:未知
  • 难度:未知

如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使得两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:

①当x=1时,点P是正方形ABCD的中心;
②当x=时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是________(填序号).

  • 题型:未知
  • 难度:未知

有两个直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,将这两个直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=        度;
(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围(直接写出结果,不必写过程).

  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当时,
②当时, 
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.

  • 题型:未知
  • 难度:未知

已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.

(1)求AE:AC的值;(2)若AB=a,FB=EC,求AC的长.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.

(1)求AC的长和点D的坐标;
(2)说明△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.

  • 题型:未知
  • 难度:未知

(年新疆区、兵团12分)如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).

(1)写出A,B两点的坐标;
(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?
(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.

  • 题型:未知
  • 难度:未知

问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。
问题探究:(1)在旋转过程中,
①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。
②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。
③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)
(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。

图1              图2                 图3

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题