如图一,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,.
(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;
(2)如图二,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.
已知,如图,D为△ABC内一点连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、CE交于E,连接DE.
(1)求证:(2)求证:△DBE∽△ABC.
以下两图是一个等腰Rt△ABC和一个等边△DEF,要求把它们分别分割成三个三角形,使分得的三个三角形互相没有重叠部分,并且△ABC中分得的三个小三角形和DEF中分得的三个小三角形分别相似.请画出两个三角形中的分割线,标出分割得到的小三角形中两个角的度数.
(本小题满分10分)如图,已知抛物线经过A(-2,0),B(-3,3) 及原点,顶点为.
(1)求抛物线的解析式;
(2)若点在抛物线上,点在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)是抛物线上第一象限内的动点,过点作轴,垂足为,是否存在点,使得以、、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分11分)已知直线与轴轴分别交于点A和点B,点B的坐标为(0,6)
(1)求的值和点A的坐标;
(2)在矩形OACB中,点P是线段BC上的一动点,直线PD⊥AB于点D,与轴交于点E,设BP=,梯形PEAC的面积为。
①求与的函数关系式,并写出的取值范围;
②⊙Q是△OAB的内切圆,求当PE与⊙Q相交的弦长为2.4时点P的坐标。
已知:如图,△ABC中,DE∥BC,AD+EC = 9,DB = 4,AE = 5,求AD的长.
如图,抛物线y=-x2+bx+c与x轴、y轴分别交于A(-1,0)、B(0,3)两点,顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积(3分)
(3)AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
已知:如图,在Rt△ABC中,∠C=90°, D、E分别为AB、 AC边上的点,且,连结DE.若AC=3,AB=5,猜想DE与AB有怎样的位置关系?并证明你的结论.
如图,△ABC中各顶点的坐标分别是A(2,6)、B(6,4)、C(4,2).
(1)在第一象限内,画出以点0为位似中心,位似比为 的位似图形△A1B1 C1
(2)写出△A1B1 C1各点的坐标.
(本题8分)如图,点D、E分别在AC、BC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,
(1)△ABC与△EDC相似吗?为什么?(2)求A、B两地间的距离。
如图,在中,点是边上的动点(点与点不重合),过动点作交于点
(1)若与相似,则是多少度?
(2)试问:当等于多少时,的面积最大?最大面积是多少?
(3)若以线段为直径的圆和以线段为直径的圆相外切,
求线段的长.
如图,已知Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连结BD。
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连结DE,求证:ED与⊙O相切。
试题篮
()