优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=
(1)如图,当点E在边AC上时,点E不与点A、C重合,

①求证:△AEP∽△ABC
②设AP=x,求MP的长 (用含x的代数式表示)
(2)若△AME∽△ENB,求AP的长.

  • 题型:未知
  • 难度:未知

如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连结CC′交斜边于点E,CC′的延长线交BB′于点F。

(1)若AC=3,AB=4,求
(2)证明:△ACE∽△FBE;
(3)设∠ABC=,∠CAC′=,试探索满足什么关系时,△ACE与△FBE是全等三角形,并说明理由。

  • 题型:未知
  • 难度:未知

已知矩形纸片ABCD中,AB=2,BC=3.
操作:将矩形纸片沿EF折叠,使点B落在边CD上.
探究:

(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;
(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果,求出相应的相似比;
(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.

  • 题型:未知
  • 难度:未知

(本小题10分)如图,已知在中,平分线,点边上,且

求证:(1);(2).

  • 题型:未知
  • 难度:未知

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

  • 题型:未知
  • 难度:未知

如图,在等边中,于点,点在边上运动,过点与边交于点,连结,以为邻边作□,设□重叠部分图形的面积为,线段的长为

(1)求线段的长(用含的代数式表示);
(2)当四边形为菱形时,求的值;
(3)求之间的函数关系式;
(4)设点关于直线的对称点为点,当线段的垂直平分线与直线相交时,设其交点为,当点与点位于直线同侧(不包括点在直线上)时,直接写出的取值范围.

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连结DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.当t>时,连结C ′C,则以CC´为直径的圆何时与直线AB相切?

  • 题型:未知
  • 难度:未知

在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值.

  • 题型:未知
  • 难度:未知

以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM.

①如图1,当点D、C分别在AO、BO的延长线上时,=_______;

②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明;

(2)如图3,若BO=,点N在线段OD上,且NO="2." 点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.

  • 题型:未知
  • 难度:未知

如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.

(1)求sin∠ABC的值;
(2)若E为x轴上的点,且SAOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,点A是x轴正半轴上的动点,点B的坐标为(0,4),将线段AB的中点绕点A按顺时针方向旋转90°得点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连接AC、BC、CD,设点A的横坐标为t.
(Ⅰ)线段AB与AC的数量关系是              ,位置关系是              
(Ⅱ)当t=2时,求CF的长;
(Ⅲ)当t为何值时,点C落在线段BD上?求出此时点C的坐标;
(Ⅳ)设△BCE的面积为S,求S与t之间的函数关系式.

  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点PQ分别从AB同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为t s.

(1)设点Q的运动速度为 cm/s.
①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为a cm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°.

(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题