如图,在平面直角系中,点A、B分别在x轴、y轴上,A(8,0),B(0,6),点P从点B出发,沿BA以每秒1个单位的速度向点A运动,点Q从点A出发,沿AO以每秒1个单位的速度向点O运动,当点Q到达点O时,两点同时停止运动,设点Q的运动时间为t秒.
(1)用含t的代数式表示C点坐标;
(2)如图1,连接PQ,过点Q作QC⊥AO交AB于点C,在整个运动过程中,当t为何值时,△CPQ为等腰三角形?
(3)如图2,以QC为直径作⊙D,⊙D与AB的另一个公共点为E.问是否存在某一时刻t,使得以BC、CE、AE的长为边的三角形为直角三角形?若存在,直接写出一个符合题意的t的值;若不存在,请说明理由.
(本题满分10分)
如图,在平面直角坐标系中,直线AB:分别与x轴、y轴交于点A、B,.
(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使,若存在,求出t值;若不存在,请说明理由.
如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时EF恰好经过点A(如图2),求FB的长度.
(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.
如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,
(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;
(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当 P、Q、C三点恰好构成黄金圆时点P的坐标.
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点
P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).
(1)用含有x的代数式表示CE的长;
(2)求点F与点B重合时x的值;
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.
如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
如图,在平面直角坐标系中,点A、B的坐标分别为(-5,0)和(5,0),以AB为直径在x轴的上方作半圆O,点C是该半圆上第一象限内的一个动点,连结AC、BC,并延长BC至点D,使BC=CD,过点D作x轴的垂线,分别交x轴、线段AC于点E、F,E为垂足,连结OF.
(1)当∠CAB=30°时,求弧BC的长;
(2)当AE=6时,求弦BC的长;
(3)在点C运动的过程中,是否存在以点O、E、F为顶点的三角形与△DEB相似?若存在,请求出此时E点的坐标;若不存在,请说明理由.
已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.
(1)求AE:AC的值;(2)若AB=a,FB=EC,求AC的长.
如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.
(1)当t=5时,请直接写出点D、点P的坐标;
(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;
(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.
在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.
(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;
(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:
①∠PEF的大小是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点所经过的路线长.
(本题12分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30.
图1 图2 图3
(1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM.
①如图1,当点D、C分别在AO、BO的延长线上时,=_______;
②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明;
(2)如图3,若BO=,点N在线段OD上,且NO=2.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.
(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
已知:如图,是半圆的直径,弦,动点、分别在线段、上,且,的延长线与射线相交于点、与弦相交于点(点与点、不重合),,.设,的面积为.
(1)求证:;
(2)求关于的函数关系式,并写出它的定义域;
(3)当是直角三角形时,求线段的长.
如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线.
(1)当点D恰好落在垂线上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△,当点O′与点E重合时停止平移.设平移的时间为t秒,△与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若与线段交于点P,连接,,,是否存在这样的t,使△是等腰三角形?若存在,求出t的值;若不存在,请说明理由.
木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;
方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;
方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;
方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.
(1)写出方案一中圆的半径;
(2)通过计算说明方案二和方案三中,哪个圆的半径较大?
(3)在方案四中,设CE=x(0<x<1),圆的半径为y.
①求y关于x的函数解析式;
②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.
试题篮
()