如图,在直角坐标系中,矩形的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.
(1)过点作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
如图1,点将线段
分成两部分,如果
,那么称点
为线段
的黄金分割点.
某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为
的图形分成两部分,这两部分的面积分别为
,
,如果
,那么称直线
为该图形的黄金分割线.
(1)研究小组猜想:在中,若点
为
边上的黄金分割点(如图2),则直线
是
的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点任作一条直线交
于点
,再过点
作直线
,交
于点
,连接
(如图3),则直线
也是
的黄金分割线.
请你说明理由.
(4)如图4,点是
的边
的黄金分割点,过点
作
,交
于点
,显然直线
是
的黄金分割线.请你画一条
的黄金分割线,使它不经过
各边黄金分割点.
我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。如图1,四边形ABCD即为“准等腰梯形”。其中∠B=∠C.
(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);
(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=
;
(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E。若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论。(不必说明理由)
在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为
,并且原多边形上的任一点
,它的对应点
在线段
或其延长线上;接着将所得多边形以点
为旋转中心,逆时针旋转一个角度
,这种经过和旋转的图形变换叫做旋转相似变换,记为
,其中点
叫做旋转相似中心,
叫做相似比,
叫做旋转角.
(1)填空:
①如图1,将以点
为旋转相似中心,放大为原来的2倍,再逆时针旋转
,得到
,这个旋转相似变换记为
( , );
②如图2,是边长为
的等边三角形,将它作旋转相似变换
,得到
,则线段
的长为
;
(2)如图3,分别以锐角三角形的三边
,
,
为边向外作正方形
,
,
,点
,
,
分别是这三个正方形的对角线交点,试分别利用
与
,
与
之间的关系,运用旋转相似变换的知识说明线段
与
之间的关系.
课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
(本题8分)已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K
①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
如图,在平面直角坐标系中,点,点
分别在
轴,
轴的正半轴上,且满足
.
(1)求点,点
的坐标.
(2)若点从
点出发,以每秒1个单位的速度沿射线
运动,连结
.设
的面积为
,点
的运动时间为
秒,求
与
的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点,使以点
为顶点的三角形与
相似?若存在,请直接写出点
的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动。以CP,CO为邻边构造□PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为秒.
(1)当点C运动到线段OB的中点时,求的值及点E的坐标;
(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;
(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设□PCOD的面积为S.
①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的的值;
②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.
如图,在中,
,
,
,
分别是边
的中点,点
从点
出发沿
方向运动,过点
作
于
,过点
作
交
于
,当点
与点
重合时,点
停止运动.设
,
.
(1)求点到
的距离
的长;
(2)求关于
的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点,使
为等腰三角形?若存在,请求出所有满足要求的
的值;若不存在,请说明理由.
(1)如图1,等腰Rt△ABO放在平面直角坐标系中, 点A,B 的坐标分别是A(0,1),B(1,0).在x轴正半轴上取D(m,0),在AD右上方作等腰Rt△ADE,∠ADE=.
①求出E点的坐标(可用含m的代数式表示);
②证明对于任意正数m,点E都在直线上;
(2)将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图22-2,A(0,
),B(1,0).Rt△ADE中, ∠ADE=
,∠AED=
.D(m,0)是x轴正半轴上任意一点,则不论m取何正数,点E都在某一条直线上,请求出这条直线的函数关系式;
(3)将(2)中Rt△AOB保持不动,取点C(2, ),在x轴正半轴上取D(m,0)(m>2), 然后在AD右上方作Rt△CDE, ∠CDE=
,∠CED=
.当m取不同值时,点E是否还是总在一条直线上? 若是,请求出直线对应的函数关系式,若不是,请说明理由.
二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D.
(1)求该二次函数的解析式(系数用含m的代数式表示);
(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;
(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?
如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0)。
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;
(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。
如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.
(1)求证:△ABC为等腰三角形;
(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.
试题篮
()