优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0)。

(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;
(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.
(1)求证:△ABC为等腰三角形;
(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.

  • 题型:未知
  • 难度:未知

如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.
(1)求证:FG=BE;
(2)连接CF,如图(2),求证:CF平分∠DCG;
(3)当时,求sin∠CFE的值.

  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,已知点A(-6,0),点B(0,8),点C在y轴上,将△OAB沿直线AC对折,使点O落在边AB上的点D处.

(1)求直线AB、AC的解析式.
(2)如图2,过B作BE⊥AC,垂足为E,若F为AB边上一动点,是否存在点F,使C为△EOF内心,若存在,请求出F点坐标,若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.
(1)点D坐标为     ,点E坐标为     
(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,
①当α=30°时,求点P的坐标;
②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;

  • 题型:未知
  • 难度:未知

已知抛物线经过A(1,0)、B(3,0)、C(0,3)三个点,

(1)求抛物线的解析式;
(2)如图(1),作△OBC的外接圆⊙Oˊ,D为BC上方半圆上一点,当tan∠COD=时,求OD的长;
(3)如图(2)直线y=x-2与抛物线交于E、F两点,与y轴交于点G,作y轴的平行线,分别与线段EF、抛物线交于P、Q两点(点P与E、F不重合),点K为射线PE上一点,当△PQK与△BAC相似时,求△PQK的最大面积。

  • 题型:未知
  • 难度:未知

已知,在矩形中,连接对角线,将绕点顺时针旋转得到,并将它沿直线向左平移,直线交于点,连接
(1)如图①,当,点平移到线段上时,线段有怎样的数量关系和位置关系?直接写出你的猜想;
(2)如图②,当,点平移到线段的延长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当时,对矩形进行如已知同样的变换操作,线段有怎样的数量关系和位置关系?直接写出你的猜想.

图①                        图②                图③

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=
(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
(2)如图③,在△ABC中,∠A<∠B<∠C.
①利用尺规作出△ABC的自相似点P(不写出作法,保留作图痕迹);
②如果△ABC的内心P是该三角形的自相似点,请直接写出该三角形三个内角的度数.

  • 题型:未知
  • 难度:未知

如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).
(1)填空:AB=    cm,AB与CD之间的距离为   cm;
(2)当4≤x≤10时,求y与x之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.

  • 题型:未知
  • 难度:未知

已知梯形ABCD中,AD∥BC,AD=1,BC=2,sinB=,过点C在∠BCD的内部作射线交射线BA于点E,使得∠DCE=∠B.

(1)如图1,当ABCD为等腰梯形时,求AB的长;
(2)当点E与点A重合时(如图2),求AB的长;
(3)当△BCE为直角三角形时,求AB的长.

  • 题型:未知
  • 难度:未知

已知:正方形的边长为1,射线与射线交于点,射线与射线交于点

(1)如图1,当点在线段上时,试猜想线段有怎样的数量关系?并证明你的猜想.
(2)设,当点在线段上运动时(不包括点),如图1,求关于的函数解析式,并指出的取值范围.
(3)当点在射线上运动时(不含端点),点在射线上运动.试判断以为圆心以为半径的和以为圆心以为半径的之间的位置关系.

(4)当点延长线上时,设交于点,如图2.问△与△能否相似,若能相似,求出的值,若不可能相似,请说明理由.

  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当时,
②当时, 
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.

  • 题型:未知
  • 难度:未知

已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(1)如图,已知折痕与边BC交于点E,连结AP、EP、EA.求证:△ECP∽△PDA;
(2)若△ECP与△PDA的面积比为1:4,求边AB的长;
(3)在(2)的条件下以点A为坐标原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,问在坐标平面内是否存在点M,使得以点A、B、E、M为顶点的四边形是平行四边形,若存在请直接写出点M的坐标;若不存在请说明理由。

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题