优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.
(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;
(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;
(3)请根据图2证明:△FGC∽△PFB.

  • 题型:未知
  • 难度:未知

如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC.
(1)当点P运动到线段OA的中点时, 点C的坐标为       
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.

  • 题型:未知
  • 难度:未知

已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知:直角梯形中,,∠=,以为直径的圆于点,连结
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形:
_____________________,______________________ ;
(2)直角梯形中,以为坐标原点,轴正半轴上建立直角坐标系(如图2),若抛物线经过点,且为抛物线的顶点.
①写出顶点的坐标(用含的代数式表示)___________;
②求抛物线的解析式;
③在轴下方的抛物线上是否存在这样的点,过点轴于点,使得以点为顶点的三角形与△相似?

  • 题型:未知
  • 难度:未知

课本作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法。
我们有多种剪法,图1是其中的一种方法:
定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线。
(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=,试画出示意图,并求出所有可能的值;
(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长。

  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,
DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F
与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s的速
度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF和点P同时停止运动.设运动的时间是
t(单位:s),t>0.
(1)当t=2时,PH=    cm ,DG =    cm;
(2)t为多少秒时△PDE为等腰三角形?请说明理由;
(3)t为多少秒时点P与点G重合?写出计算过程;
(4)求tan∠PBF的值(可用含t的代数式表示).

  • 题型:未知
  • 难度:未知

如图,抛物线y=-x2+x-2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.
(1)求点B,C所在直线的函数解析式;
(2)求△BCF的面积;
(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

  • 题型:未知
  • 难度:未知

(阅读)如图1,在平面直角坐标系xoy中,已知点A(a、O)(a>0),B(2,3),C(0,3)。过原点O作直线l,使它经过第一、第三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
【理解】若点D与点A重合,则这个操作过程为FZ[          ];直接写出答案
【尝试】
(1)若点D恰为AB的中点(如图2),求θ;
(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;

  • 题型:未知
  • 难度:未知

如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:
(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?
(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′
(3)当t为何值时,△APQ是等腰三角形?

 

  • 题型:未知
  • 难度:未知

如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.

  • 题型:未知
  • 难度:未知

已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.

  • 题型:未知
  • 难度:未知

直角梯形ABCD中,AD∥BC,AB=AD=3,边BC, AB分别在x轴和y轴上,已知点C的坐标分别为(4,0)。动点P从B点出发,以每秒1个单位的速度沿BC方向作匀速直线运动,同时点Q从D点出发,以与P点相同的速度沿DA方向运动,当Q点运动到A点时, P,Q两点同时停止运动。设点P运动时间为t,
(1)求线段CD的长。
(2) 连接PQ交直线AC于点E,当AE : EC="1" : 2时,求t的值,并求出此时△PEC的面积。
(3) 过Q点作垂直于AD的射线交AC于点M,交BC于点N,连接PM,
①是否存在某一时刻,使以M、P、C三点为顶点的三角形是等腰三角形?若存在 ,求出此时t的值;若不存在,请说明理由;
②当t=          时,点P、M、D在同一直线上。(直接写出)



备用图

 

 



  • 题型:未知
  • 难度:未知

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F ,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
⑴ 求证:△BCE≌△DCF;
⑵ OG与BF有什么数量关系?证明你的结论;
⑶ 若GE·GB=4-2,求 正方形ABCD的面积.
 

  • 题型:未知
  • 难度:未知

如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.
(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当=2时,求证:AP⊥BD;
②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题