网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时)
3 |
2.5 |
0.6 |
1.5 |
1 |
2 |
2 |
3.3 |
2.5 |
1.8 |
2.5 |
2.2 |
3.5 |
4 |
1.5 |
2.5 |
3.1 |
2.8 |
3.3 |
2.4 |
整理上面的数据,得到表格如下:
网上学习时间(时 |
||||
人数 |
2 |
5 |
8 |
5 |
样本数据的平均数、中位数、众数如下表所示:
统计量 |
平均数 |
中位数 |
众数 |
数值 |
2.4 |
根据以上信息,解答下列问题:
(1)上表中的中位数的值为 ,众数的值为 .
(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间.
(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数.
某校书法兴趣小组20名学生日练字页数如下表所示:
日练字页数 |
2 |
3 |
4 |
5 |
6 |
人数 |
2 |
6 |
5 |
4 |
3 |
这些学生日练字页数的中位数、平均数分别是
A.3页,4页B.3页,5页C.4页,4页D.4页,5页
某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
20 |
21 |
19 |
16 |
27 |
18 |
31 |
29 |
21 |
22 |
25 |
20 |
19 |
22 |
35 |
33 |
19 |
17 |
18 |
29 |
18 |
35 |
22 |
15 |
18 |
18 |
31 |
31 |
19 |
22 |
整理上面数据,得到条形统计图:
样本数据的平均数、众数、中位数如表所示:
统计量 |
平均数 |
众数 |
中位数 |
数值 |
23 |
21 |
根据以上信息,解答下列问题:
(1)上表中众数的值为 ;
(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”
(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
"惜餐为荣,殄物为耻",为了解落实"光盘行动"的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位: ,进行整理和分析(餐厨垃圾质量用 表示,共分为四个等级: . , , , . ,下面给出了部分信息.
七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.
八年级10个班的餐厨垃圾质量中 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.
七、八年级抽取的班级餐厨垃圾质量统计表
年级 |
平均数 |
中位数 |
众数 |
方差 |
等级所占百分比 |
七年级 |
1.3 |
1.1 |
|
0.26 |
|
八年级 |
1.3 |
|
1.0 |
0.23 |
|
根据以上信息,解答下列问题:
(1)直接写出上述表中 , , 的值;
(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合 等级的班级数;
(3)根据以上数据,你认为该校七、八年级的"光盘行动",哪个年级落实得更好?请说明理由(写出一条理由即可).
某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 |
||||||
甲 |
0 |
0 |
1 |
11 |
7 |
1 |
乙 |
1 |
|
|
|
|
|
(说明:成绩80分及以上为生产技能优秀,分为生产技能良好,分为生产技能合格,60分以下为生产技能不合格)
解析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 |
平均数 |
中位数 |
众数 |
甲 |
78.3 |
77.5 |
75 |
乙 |
78 |
80.5 |
81 |
得出结论:.估计乙部门生产技能优秀的员工人数为 ;.可以推断出 部门员工的生产技能水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)
为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为 小时.
为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的 , 和 ,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位: ,绘制了统计图.如图所示,下面四个推断合理的是
①年用水量不超过 的该市居民家庭按第一档水价交费;
②年用水量超过 的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在 之间;
④该市居民家庭年用水量的平均数不超过180.
A. |
①③ |
B. |
①④ |
C. |
②③ |
D. |
②④ |
某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.
(1)收集数据
从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 班级 |
|
|
|
|
|
甲班 |
1 |
3 |
3 |
2 |
1 |
乙班 |
2 |
1 |
|
2 |
|
在表中: , .
(3)分析数据
①两组样本数据的平均数、中位数、众数如表所示:
班级 |
平均数 |
中位数 |
众数 |
甲班 |
72 |
|
75 |
乙班 |
73 |
70 |
|
在表中: , .
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有 人.
③现从甲班指定的2名学生 男1女),乙班指定的3名学生 男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.
2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:
抽取七年级教师的竞赛成绩(单位:分)
6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.
七八年级教师竞赛成绩统计表
年级 |
七年级 |
八年级 |
平均数 |
8.5 |
8.5 |
中位数 |
|
9 |
众数 |
8 |
|
优秀率 |
|
|
根据以上信息,解答下列问题:
(1)填空: , ;
(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;
(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.
某校将学生体质健康测试成绩分为 , , , 四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)以下是两位同学关于抽样方案的对话:
小红:"我想随机抽取七年级男、女生各60人的成绩."
小明:"我想随机抽取七、八、九年级男生各40人的成绩."
根据如图学校信息,请你简要评价小红、小明的抽样方案.
如果你来抽取120名学生的测试成绩,请给出抽样方案.
(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.
某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位: .根据调查结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的家庭个数为 ,图①中 的值为 ;
(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.
为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在 吨范围内,并将调查结果制成了如下尚不完整的统计表:
月平均用水量(吨 |
3 |
4 |
5 |
6 |
7 |
频数(户数) |
4 |
|
9 |
10 |
7 |
频率 |
0.08 |
0.40 |
|
|
0.14 |
请根据统计表中提供的信息解答下列问题:
(1)填空: , , .
(2)这些家庭中月平均用水量数据的平均数是 ,众数是 ,中位数是 .
(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?
(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.
某公司员工的月工资如下:
员工 |
经理 |
副经理 |
职员 |
职员 |
职员 |
职员 |
职员 |
职员 |
杂工 |
月工资 元 |
7000 |
4400 |
2400 |
2000 |
1900 |
1800 |
1800 |
1800 |
1200 |
经理、职员 、职员 从不同的角度描述了该公司员工的收入情况.
设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为 、 、 ,请根据上述信息完成下列问题:
(1) , , ;
(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 .
《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了 的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.
各等级学生平均分统计表
等级 |
优秀 |
良好 |
及格 |
不及格 |
平均分 |
92.1 |
85.0 |
69.2 |
41.3 |
(1)扇形统计图中“不及格”所占的百分比是 ;
(2)计算所抽取的学生的测试成绩的平均分;
(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.
试题篮
()