优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 利用频率估计概率
初中数学

下列说法中正确的是(▲)

A.“打开电视,正在播放《新闻联播》”是必然事件;
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;
C.数据1,1,2,2,3的众数是3;
D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查.
  • 题型:未知
  • 难度:未知

小球从A点入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等。

则小球最终从E点落出的概率为(   )。

A. B. C. D.
  • 题型:未知
  • 难度:未知

自连续正整数10~99中选出一个数,其中每个数被选出的机会相等。
求选出的数其十位数字与个位数字的和为9的机率为何?

A. B. C. D.
  • 题型:未知
  • 难度:未知

(本小题满分8分)

如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a与 b的乘积等于2的概率.

  • 题型:未知
  • 难度:未知

小明的讲义夹放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为(  ▲ )

A. B. C. D.
  • 题型:未知
  • 难度:未知

玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有    种.

  • 题型:未知
  • 难度:未知

已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是(  )

A. B. C. D.
  • 题型:未知
  • 难度:未知

一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.

  • 题型:未知
  • 难度:未知

有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是    (   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.

如果读者不愿意转转盘,那么可以直接获得10元的购书券.
(1)写出转动一次转盘获得45元购书券的概率;
(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.

  • 题型:未知
  • 难度:未知

一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有       个黄球

  • 题型:未知
  • 难度:未知

在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.

若商品的价格是360元,那么他一次就能猜中的概率是      

  • 题型:未知
  • 难度:未知

中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A(海政)、B(空政)、C(武警)组成种子队,由部队文工团的D(解放军)和地方文工团的E(云南)、F(新疆)组成非种子队.现从种子队A、B、C与非种子队D、E、F中各抽取一个队进行首场比赛.
(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A、B、C、D、E、F表示);
(2)求首场比赛出场的两个队都是部队文工团的概率P.

  • 题型:未知
  • 难度:未知

下列说法正确的是(     ).

A.买一张福利彩票一定中奖,是必然事件.
B.买一张福利彩票一定中奖,是不可能事件.
C.抛掷一个正方体骰子,点数为奇数的概率是
D.一组数据:1,7,3,5,3的众数是3.
  • 题型:未知
  • 难度:未知

初中数学利用频率估计概率试题