某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好,并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了 名学生;若该校共有1500名学生,估计全校爱好运动的学生共有 名;
(2)补全条形统计图,并计算阅读部分圆心角是 ;
(3)在全校同学中随机选出一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生概率是 .
从甲地到乙地有,,三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时 公交车用时的频数 线路 |
合计 |
||||
59 |
151 |
166 |
124 |
500 |
|
50 |
50 |
122 |
278 |
500 |
|
45 |
265 |
167 |
23 |
500 |
早高峰期间,乘坐 (填“”,“ ”或“” 线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录"钉尖向上"的次数是308,所以"钉尖向上"的概率是0.616;
②随着试验次数的增加,"钉尖向上"的频率总在0.618附近摆动,显示出一定的稳定性,可以估计"钉尖向上"的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,"钉尖向上"的频率一定是0.620.
其中合理的是
A. |
① |
B. |
② |
C. |
①② |
D. |
①③ |
林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数 |
1000 |
1500 |
2500 |
4000 |
8000 |
15000 |
20000 |
30000 |
成活的棵数 |
865 |
1356 |
2220 |
3500 |
7056 |
13170 |
17580 |
26430 |
成活的频率 |
0.865 |
0.904 |
0.888 |
0.875 |
0.882 |
0.878 |
0.879 |
0.881 |
估计该种幼树在此条件下移植成活的概率为 .
在一个不透明的盒子中,共有“一白三黑”个围棋子,它们除了颜色之外没有其它区别.
(1)随机地从盒中提出子,则提出白子的概率是多少?
(2)随机地从盒中提出子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n |
100 |
150 |
200 |
500 |
800 |
1000 |
摸到白球的次数m |
58 |
96 |
116 |
295 |
484 |
601 |
摸到白球的频率 |
0.58 |
0.64 |
0.58 |
0.59 |
0.605 |
0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)试估算口袋中白种颜色的球有多少只?
(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?
2015年国家实施“全面二孩政策”,人民医院迎来人口出生小高峰,某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?画出树状图或列表.
初三年级组织冬季拔河比赛,先用抽签的方法两两一组进行初赛,初三年级共有(1)(2)(3)(4)四个班,小明是初三(1)班的学生,他说“我们班和初三(2)班恰好分在同一组的概率是”你认为正确吗?如果正确,说明理由;如果不正确,写出正确的解答过程.
若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 .
九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最大.
有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.
(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)
(2)求摸出的两张卡片图形都是中心对称图形的概率.
小颖为班级联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分 成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘 A 转出了红色,转盘 B 转出 了蓝色,那么配成了紫色.
(1)利用树状图或列表的方法计算配成紫色的概率.
(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?说明理由.
一个口袋中有 16 个白球和若干个黑球,在不允许将球倒出来的前提下,为估计口袋中黑球的
个数,采用了如下的方法:从口袋中摸出 1 个球记下颜色放回摇匀,不断重复上述过程多次,发现 摸到黑球的频率稳定在 0.8,根据上述数据,可估计口袋中大约有 个黑球.
试题篮
()