如图,是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每个扇形上都标有相应的数字。小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜。如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止。
(1)请你用画树状图或列表的方法,求为平局的概率;
(2)你认为该游戏规则公平吗?为什么?如果不公平,
请你修改该游戏规则,使游戏公平。
某商场为了“五一”促销,举办抽奖活动,抽奖方案是:将如图的正六边形转盘等分成6个全等三角形,其中两个涂上灰色,顾客任意转动这个转盘2次,当转盘停止时,两次都指向灰色区域的即可获得奖品.
(1)求顾客获得奖品的概率;
(2)商场工作人员又提出了以下几个方案:
①抛掷一枚均匀的硬币3次,3次抛掷的结果都是正面朝上的即可获得奖品;
②一只不透明的袋子中,装有10个白球和20个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记下颜色后放回袋中并搅匀,再从中摸出一个球,两次都摸出白球的即可获得奖品;
③一只不透明的袋子中,装有2个白球和4个红球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,两个都是白球的即可获得奖品;
④任意抛掷一枚均匀的骰子两次,两次朝上的点数都是3的倍数的即可获得奖品;
这几种方案中和原方案获奖概率相同的有 (填序号).
甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第一象限的概率.
甲、乙、丙三位同学用质地大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.
(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;
(2)求三位同学中至少有一人抽到自己制作卡片的概率.
甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.
(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;
(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。
(1)如果从中抽取一张牌,那么牌面数字是4的概率是多少?
(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字。当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢。现请你利用数状图或列表法分析游戏规则对双方是否公平?并说明理由。
不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
小张和小罗玩一种转盘游戏,如图是两个完全相同的转盘,转盘一被分成面积相等的三个扇形,用数字“1”、“2”、“3”表示,转盘二被分成面积相等的四个扇形,用数字“1”、“2”、“3”、“4”表示,固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字之积为偶数,则小张获胜;若两指针所指数字之积为奇数,则小罗获胜;若其中一个指针指向扇形的分界线,则都重转一次.你认为游戏是否公平?请说明理由.若不公平,请你修改游戏规则,使游戏公平.
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字−1,−2和−3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=-x−1上的概率.
在无锡市首届“文明风尚好少年”全媒体选拔大赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论.
(1)请用树状图表示出三位评委给小选手乐乐的所有可能的结论;
(2)对于小选手乐乐,只有甲、乙两位评委给出相同结论的概率是多少?
(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问乐乐进入复赛的概率是多少?
有A、B两个口袋,A口袋中装有两个分别标有数字2,3的小球;B口袋中装有三个分别标有数字,4,的小球.小明先从A口袋中随机取出一个小球,用m表示所取球上的数字,再从B口袋中随机取出两个小球,用n表示所取球上的数字之和.
(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;
(2)求的值是整数的概率.
有时我们可以看到这样的转盘游戏:如图所示,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的资金是多少.例如,当指针指向 “2”区域时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的资金为0.2元,你就可以得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?
在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其他都相同,(1)在其中一个口袋中一次性随机摸出两个球,请写出在这一过程中的一个必然事件;
(2)若分别从两个袋中随机取出一个球,试求出两个小球颜色相同的概率。
试题篮
()