爸爸给双胞胎兄弟小明和小强带回一张篮球比赛门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.
小明:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5 的两个小球,且都已各自搅匀,小强蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则小明得到门票;若积为奇数,则小强得到门票.
小强:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,小明、小强各蒙上眼睛有放回地摸1次,小明摸到偶数就记2分,摸到奇数记0分;小强摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).
(1)小明设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;
(2)小强设计的游戏方案对双方是否公平?不必说理.
今年五一节,小明和爸爸决定用游戏的方式确定两个城市作为旅游目的地。他们把3张分别写着“上海”、“杭州”、“宁波”的卡片放入不透明的A口袋,把2张分别写着“苏州”、“南京”的卡片放入不透明的B口袋。小明从A口袋中随机抽取一张卡片,爸爸从B口袋中随机抽取一张卡片,以抽到的两张卡片上写着的城市为旅游目的地。
(1)请你用列树状图或列表法来说明,他们共有多少种旅游方案?
(2)恰好抽到小明最喜欢去的两个城市——“上海”和“苏州”的概率是多少?
“五·一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;
(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”,乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.
(1)这个游戏公平吗?如果不公平,这是一个偏向谁的游戏?
(2)在此游戏中,要想抢到20,应抢到哪些数?
在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.
|
白 |
黄 |
红 |
白 |
白白 |
白黄 |
白红 |
黄 |
黄白 |
黄黄 |
黄红 |
红 |
红白 |
红黄 |
红红 |
小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.
(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)
(2) 请你用列表法或画树状图(树形图) 法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)
某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:
(1)该顾客至少可得___元购物券,至多可得___元购物券;
(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
节约能源,从我做起.为响应长株潭“两型社会”建设要求,小李决定将家里的4只白炽灯全部换成节能灯.商场有功率为10w和5w两种型号的节能灯若干个可供选择.
(1)列出选购4只节能灯的所有可能方案,并求出买到的节能灯都为同一型号的概率;
(2)若要求选购的4只节能灯的总功率不超过30w,求买到两种型号的节能灯数量相等的概率.
在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.
(1)若从中任取一球,球上的数字为偶数的概率为多少?
(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.
(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.
现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为.
(1)求乙盒中红球的个数;
(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.
有A、B、C1、C2四张同样规格的硬纸片,它们的背面完全一样,正面如图1所示.将它们背面朝上洗匀后,随机抽出两张(不放回)可拼成如图2的四种图案之一.请你用画树状图或列表的方法,分析拼成哪种图案的概率最大?
有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4.这6个球除所标数字以外没有任何其他区别.从甲、乙两袋中各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字只和是6的概率.
襄阳市教育局为提高教师业务素质,扎实开展了“课内比教学”活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,某校有三个选手参加这次讲课比赛,请你求出这三个选手中有两个抽中内容“A”,一个抽中内容“B”的概率.
某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W1,W2,W3表示)、三个化学物实验题(题签分别用代码H1、H2、H3表示),二个生物实验题(题签分别用代码S1,S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签.
(1)请你用画树状图的方法,写出他恰好抽到H2的情况;
(2)求小亮抽到的题签代码的下标(例如“W2”的下标为“2”)之和为7的概率是多少?
某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.
试题篮
()