阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=________,b=________;
(2)利用所探索的结论,找一组正整数a、b、m、n,填空:________+________=(______+______)2;
(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值.
先阅读再化简求值:
(1)在化简的过程中。小张和小李的化简结果不一样:小张的化简过程如下:
原式=
小李的化简过程如下:
原式=
请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由?
(2)请你利用上面所学的方法,化简求值:已知,求x2+2x-3的值.
试题篮
()