优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 面积及等积变换
初中数学

在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
(1)第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(2)第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

(3)探究活动结束后,老师给大家留下了一道探究题:
如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,
请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.

  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
直线与坐标轴分别交于A、C两点,点B的坐标为(-4,1),⊙B与
轴相切于点M.

求点A的坐标及∠CAO的度数
⊙B以每秒1个单位长度的速度沿轴向右平移,同时,直线绕点A逆时针匀速旋转.当⊙B第一次与⊙O相切时,直线也恰好与⊙B第一次相切,问:直线绕点A
每秒旋转多少度?
如图2,过A、O、C三点作⊙O1,点E为劣弧AO上一点,连接EC、EA、EO,
当点E在劣弧AO上运动时(不与A、O两点重合),的值是否发生变化?如
果不变,求其值;如果变化,说明理由.

  • 题型:未知
  • 难度:未知

下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,……,则第⑥个图形中正多边形的个数为(    )

A.90 B.91 C.115 D.116
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,若点M(1,3)与点Nx,3)之间的距离是5,则x的值是____________.

  • 题型:未知
  • 难度:未知

.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.

  • 题型:未知
  • 难度:未知

如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了  ▲  cm;②当微型机器人移动了2012cm时,它停在  ▲  点.

  • 题型:未知
  • 难度:未知

现有一张长和宽之比为2:1的长方形纸片.将它折两次(第一次折后也可以打开铺平再折第二次).使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作),如图甲(虚线表示折痕).

除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作.如图乙和图甲是相同的操作).

图①                        图②                 图③

  • 题型:未知
  • 难度:未知

平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为【   】

A.(1,) B.( -1,) C.(0,2) D.(2,0)
  • 题型:未知
  • 难度:未知

(本题8分)老师说:“今天我来表演一个数学魔术。”说完便在黑板上画出下面两个图:

⑴请你借助数学知识对这两个图通过计算验证说明拼接是否可行,若不行请说明理由;
⑵画出正确的拼接图(单位),并作简单说明.

  • 题型:未知
  • 难度:未知

下面每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n(n≥2)个圆点时,图案的圆点数为Sn,按此规律推算Sn 关于n的关系式为:__________________.

  • 题型:未知
  • 难度:未知

阅读下列材料:                                        
在学习小组,小明接到这样一个任务:把一个正方形分割成9个、10个和11个小正方形。为完成任务,小明先学习了两种简单的“基本分割法”。
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

学习了上述两种“基本分割法”后,小明很从容地就完成了分割的任务:
(1)把一个正方形分割成9个小正方形.
方法一:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成(个)小正方形.
方法二:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成(个)小正方形.
(2)把一个正方形分割成10个小正方形.
如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加个小正方形,从而分割成(个)小正方形.
请你参照上述分割方法解决下列问题(只要求画图,不用说明分割方法):
(1)请你替小明同学把图⑥给出的正方形分割成11个小正方形;
(2)仿照基本分割法1:请把图a中的正三角形分割成4个小正三角形;
(3)仿照基本分割法2:请把图b 中的正三角形分割成6个小正三角形;
(4)分别把图c和图d中的正三角形分割成9个和10个小正三角形.

  • 题型:未知
  • 难度:未知

如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.

(1)4节链条长             cm;
(2)n节链条长             cm;
(3)如果一辆22型自行车的链条由50节这样的链条组成,那么这辆自行车上的链条总长度是多少?

  • 题型:未知
  • 难度:未知

如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为         

  • 题型:未知
  • 难度:未知

如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是(   )

A.相似(相似比不为1)
B.平移
C.对称
D.旋转
  • 题型:未知
  • 难度:未知

如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD的边长为2,E是AD的中点,按CE将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.
(1)在下面的菱形斜网格中画出示意图;

 



 

 



 

 

(2)判断所拼成的三种图形的面积()、周长()的大小关系(用“=”、“>”或“<”连接):

面积关系是                                       
周长关系是                                       

  • 题型:未知
  • 难度:未知

初中数学面积及等积变换试题