如图,△ABC中,AB=AC=5,BC=8.
(1)求△ABC的面积;
(2)若过点C作AB平行线CD,并使CD=BC,连结BD,交AC于点E.
①那么∠ACB与∠D有怎样的数量关系?证明你的结论;
②那么△ABE与△BCE的面积比是多少?写出求解过程.
在平面直角坐标系中,规定把一个正方形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知正方形ABCD的顶点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,则B的对应点B′的坐标是 .
某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用h,立即按原路以另一速度返回,直至与货车相遇.已知货车的速度为60km/h,两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示,现有以下4个结论:
①快递车到达乙地时两车相距120km;
②甲、乙两地之间的距离为300km;
③快递车从甲地到乙地的速度为100km/h;
④图中点B的坐标为(3,75).
其中,正确的结论有( )
A.1个 | B.2个 | C.3个 | D.4个 |
27.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.
(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.
已知正比例函数y1=2x和一次函数y2=﹣x+b,一次函数的图象与x轴、y轴分别交于点A、点B,正比例函数的图象与一次函数的图象相交于点P.
(1)若P点坐标为(3,n),试求一次函数的表达式,并用图象法求y1≥y2的解;
(2)若S△AOP=3,试求这个一次函数的表达式;
(3)x轴上有一定点E(2,0),若△POB≌△EPA,求这个一次函数的表达式.
如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有 个.
平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )
A.4个 | B.8个 | C.10个 | D.12个 |
如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并证明你的结论.
已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
已知A、B两地相距900m,甲、乙两人同时从A地出发,以相同速度匀速步行,20min后到达B地,甲随后马上沿原路按原速返回,回到A地后在原地等候乙回来;乙则在B地停留10min后也沿原路以原速返回A地,则甲、乙两人之间的距离s(m)与步行时间t(min)之间的函数关系可以用图象表示为( )
A. B.
C. D.
(本小题满分11分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,
若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
已知直线,直线与、分别交于、两点,点是直线上的一动点
(1)如图①,若动点在线段之间运动(不与、两点重合),问在点的运动过程中是否始终具有这一相等关系?试说明理由;
(2)如图②,当动点在线段之外且在的上方运动(不与、两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;
观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为 (用含n的代数式表示).
将连续的奇数1、3、5、7…排成如图所示的数阵:
(1)十字框中的五个数的和与中间数15有什么关系?
(2)设中间数为a,用代数式表示十字框中五数之和.
(3)若将十字框上下、左右平移,可框住另外五个数,这五个数的和还有这种规律吗?
(4)十字框中五个数之和能等于2015吗?若能,请写出这五个数;若不能,说明理由.
l00米长的小棒,第1次截去一半,第2次截去剩下的,第三次截去剩下的,如此下去,直到截去剩下的,则剩下的小棒长为( )米 。
A.20 | B.15 | C.1 | D.50 |
试题篮
()