轻松寒假,快乐复习30天 第21天
下列说法中正确的是
A.位似图形一定是相似图形 |
B.相似图形一定是位似图形 |
C.两个位似图形一定在位似中心的同侧 |
D.位似图形中每对对应点所在的直线必互相平行 |
如图,直线是一条河,A、B两地相距10,A、B两地到的距离分别为8、14,欲在上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )
如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是( )
A.1:6 | B.1:5 | C.1:4 | D.1:2 |
如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H, GH分别交OM、ON于A、B点,若,则 ( )
A. B. C. D.
在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,点M、N分别是AB、BC的中点,若PM+PN的最小值为2,则△ABC的周长是( )
A.2 B. C.4 D.
在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是 .
如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为 cm.
如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若∠PMO=33°,∠PNO=70°则∠QPN的度数为_______.
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1)分别以AB,AC为对称轴,画出△ABD,△ACD的轴对称图形,D点的对称点分别为E,F,延长EB,FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
如图,先把一矩形纸片ABCD对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.
(1)求证:△PBE∽△QAB;
(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由.
(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?