课时同步练习(浙教版)八年级下4.3中心对称
既是轴对称图形又是中心对称图形的是( )
A.等腰梯形 | B.菱形 | C.平行四边形 | D.等边三角形 |
在下列图形中,既是中心对称图形,又是轴对称图形是( )
A.等腰梯形 | B.正三角形 | C.正方形 | D.平行四边形 |
下列四个图形中既是中心对称图形又是轴对称图形的个数为( )
A.1个 | B.2个 | C.3个 | D.4个 |
下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |
在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是( )
A. | B. | C. | D. |
下列图形①角,②平行四边形,③圆,④矩形,⑤菱形,⑥正方形,⑦等腰梯形,既是中心对称又是轴对称图形的有( )
A.②③④⑥, | B.②③④⑤ | C.①③⑥⑦ | D.③④⑤⑥ |
将一张平行四边形纸片折一次,使折痕平分这个面积,这样的折法共有( )种.
A.5 | B.1 | C.3 | D.无数 |
若两个图形关于某点成中心对称,则以下说法:
①这两个图形一定全等;
②对称点的连线一定经过对称中心;
③对称点与旋转中心的连线所成的角都是旋转角;
④一定存在某条直线,沿该直线折叠后的两个图形能互相重合.
正确的是( )
A.①②③ | B.①③④ | C.①②④ | D.①②③④ |
下列图形既是中心对称图形,又是轴对称图形的是( )
A.角 | B.等边三角形 | C.正十二边形 | D.正以边形 |
在线段、角、等腰三角形、等边三角形、平行四边形、正方形、正五边形、正六边形、圆这些图形中,是旋转对称图形的为 ,是中心对称图形的为 .
如果两个图形的对应点的连线都经过某点,并且被这点平分,那么这两个图形关于这点中心对称. .
关于中心对称的两个图形,对称点所连线段都经过 ,而且被 所平分,关于中心对称的两个图形是 图形.
把一个图形绕着某一个点旋转 ,如果它能够与另一个图形 ,那么称这两个图形关于这个点对称或中心对称,这个点叫做 ,这两个图形中的对应点叫做关于中心的 .
如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 .
给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是 .(填写序号)
如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线将剩下图形的面积平分.(保留作图痕迹)
如图.已知由平行四边形ABCD各顶点向形外一条直线l作垂线,设垂足分别为A′,B′,C′,D′.
(1)求证:A′A+C′C=B′B+D′D;
(2)如果移动直线l,使它与四边形ABCD的位置关系相对变动得更特殊一些(如l过A,或l交AB,BC等),那么,相应地结论会有什么变化?试作出你的猜想和证明;
(3)如果考虑直线l和平行四边形更一般的关系(如平行四边形变成圆,或某一中心对称图形,垂线AA',BB',CC',DD'只保持平行等),那么又有什么结论,试作出你的猜想和证明.
如图,△ABC与△DEF关于点O对称,请你写出两个三角形中的对称点,相等的线段,相等的角.
如图,在四边形ABCD中,AD∥BC,E是CD的中点.
(1)画图:连接AF并延长,交BC的延长线于点F,连接BE;
(2)填空:点A与点F关于点 成中心对称,若AB=AD+BC,则△ABF是 三角形,此时点A与点F关于直线 成轴对称;
(3)图中△ 的面积等于四边形ABCD的面积.
如图,两个半圆分别以P、Q为圆心,它们的半径相等,A1、P、B1、B2、Q、A2在同一条直线上.这个图形中的两个半圆是否成中心对称?如果是,请找出对称中心O.
如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.
(1)图中哪两个图形成中心对称?
(2)若△ADC的面积为4,求△ABE的面积.
如图,把长方形纸片ABCD沿EF折叠,使得点D与点B重合,点C落在点C′的位置上.
(1)试说明△BEF是等腰三角形;
(2)图形中是否存在成中心对称的两个图形?如果存在,请指出是哪两个图形(不必说明理由,图中实线、虚线一样看待);
(3)若AB=4,AD=8,求折痕EF的长度.
如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.
请在所给网格中按下列要求画出图形.
(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;
(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)
(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)
我们规定:若点O是线段MN的中点,则称点M关于O的对称点是N(或称点M与点N关于O成中心对称);若直线n是线段MN的垂直平分线,则称点M关于n的对称点是N(或称点M与点N关于n成轴对称),如图现有石头A和石头B关于竹竿l对称,石头A和石头B相距80cm一只电子青蛙位于点P,与石头A相距60cm,与竹竿l相距30cm,他按照如下指令跳动:第一跳落点于P1,P与P1关于点A成中心对称;第二跳落点于P2,P2与P1关于竹竿l成轴对称;第三跳落点于P3,P3与P2关于点B成中心对称;第四跳落点于P4,P4与P3关于竹竿l成轴对称;以此跃下去,若每25跳可以休息一次.
(1)画出这只电子青蛙前四跳运动的路线图,并求点P4与点P1的距离(不须说明理由)
(2)求电子青蛙第三次休息点与点P的距离.