河南省郑州市九年级第一次质量预测数学试卷
下列各组数中,互为相反数的两个数是( )
A.-3和+2 | B.5和 | C.-6和6 | D.和 |
如图所示的几何体是由一个正方体切去一个小正方体形成的,从正面看到的平面图形为( )
A. | B. | C. | D. |
黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:,则由上述数据推断乙种麦子产量比较稳定的依据是( )
A. | B. | C. | D. |
如图,△ABC中,BE、CF分别是∠ABC、∠ACB的角平分线,∠A=50°,那么∠BDC的度数是( )
A.105° B.115° C.125° D.135°
第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有3名来自莫斯科国立大学,有5名来自圣彼得堡鼓励大学,现从这8名志愿者中随机抽取1人,这名志愿者来自莫斯科国立大学的概率是( )
A. | B. | C. | D. |
如图,D是△ABC内一点,BD⊥CD,AD=12,BD=8,CD=6,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是( )
A.14 B.18 C.20 D.22
观察二次函数的图像,下列四个结论:
①;②;③;④.正确结论的个数是( )
A.4个 | B.3个 | C.2个 | D.1个 |
中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为 .
冯老师为了响应市政府“绿色出行”的号召,上下班由自驾车改为骑自行车.已知冯老师家距学校15km,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多h.如果设骑自行车的速度为km/h,则由题意可列方程为 .
如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为 .
在平面直角坐标系中,已知点A(-4,2),B(-2,-2),以原点O为位似中心,把△ABO放大为原来的2倍,则点A的对应点的坐标是 .
课堂上,王老师出了这样一道题:
已知,求代数式的值.
小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与无关” 解答过程如下:
原式 = ①
= ②
= ③
= ④
(1)从原式到步骤①,用到的数学知识有: ;
(2)步骤②中的空白处的代数式为: ;
(3)从步骤③到步骤④,用到的数学知识有: .
在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.
(1)A组的频数是 ,本次调查样本的容量是 ;
(2)补全直方图(需标明各组频数);
(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?
如图1,小颖将一组平行的纸条折叠,点A、B分别落在在A′,B′处,线段FB′与AD交于点M.
(1)试判断△MEF的形状,并证明你的结论;
(2)如图②,将纸条的另一部分CFMD沿MN折叠,点C,D分别落在C′,D′处,且使MD′经过点F,试判断四边形MNFE的形状,并证明你的结论;
(3)当∠BFE=_____度时,四边形MNFE是菱形.
住在郑东新区的小明知道“中原第一高楼”有多高,他登上了附近的另一座高层酒店的顶层某处.已知小明所处位置距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°,测得“中原第一高楼”底部的俯角为45°,请你用初中数学知识帮小明解决这个问题.(请你画出示意图,并说明理由)(参考数据:)
如图,已知反比例函数()与一次函数()相交于A、B两点,AC⊥轴于点C,若△OAC的面积为1,且tan∠AOC=2.
(1)求反比例函数与一次函数的表达式;
(2)请直接写出B点的坐标,并指出当为何值时,反比例函数的值小于一次函数的值.
某旅馆有客房120间,每间房的日租金为160元,每天都客满.旅馆装修后要提高租金,经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金的总收入增加多少元?
如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上.
(1)求;
(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的;
(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,存在最大值与最小值,请直接写出最大值 ,最小值 .
已知抛物线与轴交于A、B两点,与轴交于点C,其中点B在轴的正半轴上,点C在轴的正半轴上,OB=2,OC=8,抛物线的对称轴是直线.
(1)求此抛物线的表达式;
(2)连接AC、BC、,若点E是线段AB上的一个动点(与点A、点B不重合),过点E做EF//AC交与点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上说明S是否存在最大值,若存在,请求出S的最大值,并求出此点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.