课时同步练习(苏科版)七年级上6.3余角、补角、对顶角2
如图,AB,CD相交于点O,OE是∠AOD的平分线,且∠AOD=50°,则∠COE的度数为 .
如图,已知AB、CD、EF相交于点O,EF⊥AB,OG为∠COF的平分线,OH为∠DOG的平分线,若∠AOC:∠COG=4:7,则∠GOH= .
公园里准备修6条甬道,并在甬道交叉路口处设一个报亭,这样的报亭最多设 个.
(1)若直线l1与直线l2相交,能构成 对对顶角;
(2)若在(1)的基础上再任意的画一条直线l3,则能构成 对对顶角.
以下两题请选择一题解答,若两题都答,只把第1题的分数记入学分.
①如图1,已知射线OC在平角∠AOB的内部,且∠AOC>∠BOC,OD平分∠AOC,OE平分∠BOC.
(1)比较∠COD与∠COE的大小,并说明理由.
(2)你能求出∠DOE的大小吗?如果能,请求出它的度数,若不能,说明理由.
(3)若∠AOB=a,你能用a表示∠DOE的度数吗?请说明理由.
②如图2,∠AOC与∠BOD都是直角,∠BOC=50°.
(1)求∠AOB和∠DOC的度数,∠AOB和∠DOC有何大小关系?
(2)若∠BOC的具体度数不稳定,其他条件不变,这种关系仍然成立吗?说明理由.
(3)试猜想∠AOD与∠COB在数量上是相等、互余,还是互补关系?你能用推理的方法说明你的猜想是否合理吗?
(4)当∠BOD绕点O旋转到图3位置时,你原来的猜想还成立吗?说明理由.
如图,直线AB与CD相交于O,OE平分∠AOB,OF平分∠COD.
(1)图中与∠COA互补的角是 ;(把符合条件的所有角都写出来)
(2)如果∠AOC=35°,求∠EOF的度数.
数学老师到菜市场买菜,发现若把10千克的菜放在某秤上,秤的指针盘上的指针转了180°,于是老师在学完一元一次方程和角的相关知识后给学生提出了两个问题:
(1)老师把6千克的菜放在该秤上,指针转过多少度?
(2)若刘大妈第一次把若干千克的菜放在秤上,通过指针盘度数发现与自己所需数量还差一些,于是再放了1千克的菜上去,发现前、后两次指针转过的角度恰好互余.求刘大妈第一次放多少千克菜在秤盘上?
如图,已知直线AB、CD交于点O,且∠1:∠2=2:3,∠AOC=60°,求∠2的度数.
(1)如图,AB、CD相交于O点,∠AOC=(2x﹣10)°,∠DOB=(x+25)°,求∠AOD的度数.
(2)解方程:.
如图所示,OD是∠BOC的平分线,OE是∠AOC的平分线,找出图中互补的角、互余的角.
我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.
如图,AB与CD交于点O,OM为射线.
(1)写出∠BOD的对顶角.
(2)写出∠BOD与∠COM的邻补角.
(3)已知∠AOC=70°,∠BOM=80°,求∠DOM和∠AOM的度数.
如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角.若已知∠BOE=∠AOC,∠EOD=36°,求∠AOC的度数.
(1)方程x﹣5=0的解是 .
(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC= °.
如图,直线AB、CD相交于O,∠BOC=80°,OE是∠BOC的角平分线,OF是OE的反向延长线,
(1)求∠2、∠3的度数;
(2)说明OF平分∠AOD.