浙江省宁波市宁海县东片九年级上学期第三次月考数学试卷
二次函数的图象的对称轴是( )
A.直线x= -3 | B.直线 x=3 | C.直线x= -1 | D.直线x=1 |
将抛物线y=3x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为( )
A.y=3(x-3)2+4 | B.y=3(x+4)2-3 |
C.y=3(x-4)2+3 | D.y=3(x-4)2-3 |
如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,那么sinA的值等于( )
A. | B. | C. | D. |
小明不慎把家里的一块圆形玻璃打碎了,其中四块碎片如图所示,为配到一块与原来 大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
A.第①块 | B.第②块 | C.第③块 | D.第④块 |
下列语句中不正确的有 ( )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.
A.1个 B.2个 C.3个 D.4个
在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……如此大量的摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论∶①若进行大量的摸球实验,摸出白球的频率应稳定于30%;②若从布袋中随机摸出一球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )
A.①②③ | B.①② | C.①③ | D.②③ |
如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=( )
A.100° | B.110° | C.120° | D.130° |
如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AE∶AC = 3∶4,AD=6,则BD等于( )
A、8 B、6 C、4 D、2
在⊙O 中,P是⊙O内一点,过点P最短和最长的弦分别为6和10,则经过点P且长度为整数的的弦共有( )条。
A.5 | B.8 | C.10 | D.无数条 |
如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是( )
在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,……… 按这样的规律进行下去,第2012个正方形的面积为( )
A. | B. |
C. | D. |
如图,有5张背面完全相同的纸质卡片,其正面分别标有数:6,,,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面数比3小概率是 .
如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是 .
如图,AB是⊙O的直径,弦BC=4㎝,F是弦BC的中点,∠ABC=60°,若动点E以1 ㎝/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为
半圆O的直径AB=9,两弦AB、CD相交于点E,弦CD=,且BD=7,则DE=
如图,圆心角∠AOB=120°,弦AB=2cm.
(1)求⊙O的半径r;
(2)求劣弧 的长(结果保留).
网格中每个小正方形的边长都是1.
(1)将图①中的格点三角形ABC平移,使点A平移至点A`,画出平移后的三角形;
(2)在图②中画一个格点三角形DEF,使△DEF∽△ABC,且相似比为2∶1;
(3)在图③中画一个格点三角形PQR,使△PQR∽△ABC,且相似比为∶1.
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面
(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;
(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
如图, △ABC内接于⊙O, AD⊥BC于D, AE是⊙O的直径. 若AB=6, AC="8," AE="11," 求AD的长.
我镇绿色和特色农产品在市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我区收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:
(1)若胡经理想将这批蘑菇存放x天后一次性出售, 则x天后这批蘑菇的销售单价为 元, 这批蘑菇的销售量是 千克;
(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).
(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?
对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是 .
(2)点A 抛物线E上;(填“在”或“不在”)
(3)n= ..
【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是 .
【应用1】二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C,求出所有符合条件的t的值.