优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学 / 试卷选题

圆锥曲线—焦点访谈之定点定值问题1

(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(文科)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且过点(3,﹣1).
(1)求椭圆C的方程;
(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PA=PN,再过P作直线l′⊥MN,证明:直线l′恒过定点,并求出该定点的坐标.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)已知动圆C与圆相外切,与圆相内切,设动圆圆心C的轨迹为T,且轨迹T与x轴右半轴的交点为A.
(Ⅰ)求轨迹T的方程;
(Ⅱ)已知直线l:y=kx+m与轨迹为T相交于M、N两点(M、N不在x轴上).若以MN为直径的圆过点A,求证:直线l过定点,并求出该定点的坐标.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(文科)已知△ABC的两顶点A、B分别是双曲线2x2﹣2y2=1的左、右焦点,且sinC是sinA、sinB的等差中项.
(Ⅰ)求顶点C的轨迹T的方程;
(Ⅱ)设P(﹣2,0),M、N是轨迹T上不同两点,当PM⊥PN时,证明直线MN恒过定点,并求出该定点的坐标.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.
(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以 为斜边的直角三角形.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(文科)已知抛物线为直线上任意一点,过点作抛物线的两条切线,切点分别为,.
(Ⅰ)当的坐标为时,求过三点的圆的方程;
(Ⅱ)证明:以为直径的圆恒过点.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.
(Ⅰ)求抛物线方程及其焦点坐标;
(Ⅱ)已知为原点,求证:为定值.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(文科)已知点为双曲线为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于.

(1)线段的中点的轨迹的方程;
(2)设轨迹轴交于两点,在上任取一点,直线分别交轴于两点.求证:以为直径的圆过两定点.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为 ,过F1且垂直于x轴的直线被椭圆C截得的线段长为l. 
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点.
(Ⅰ)若动点满足(其中为坐标原点),求点的轨迹方程;
(Ⅱ)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(文科)已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(文科)如图,椭圆E:(a>b>0)的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知

(理科)已知椭圆C:的离心率为,且经过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:与椭圆C相交于两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.

来源:圆锥曲线—焦点访谈之定点定值问题1
  • 题型:未知
  • 难度:未知