山东省菏泽市高三第一次模拟考试理科数学试卷
给定函数① ② ③ ④,其中在区间上单调递减的函数序号是( )
A.①② | B.②③ | C.③④ | D.①④ |
在中,若,则的形状是( )
A.等腰三角形 | B.正三角形 | C.直角三角形 | D.等腰直角三角形 |
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频率分布直方图如图所示,假设得分值的中位数为,众数,平均数为,则( )
A. | B. |
C. | D. |
某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )
A.192种 | B.216种 | C.240种 | D.288种 |
设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )
A. | B. | C. | D. |
定义在实数集R上的函数满足,且,现有以下三种叙述:
①8是函数的一个周期;
②的图象关于直线对称;
③是偶函数。
其中正确的序号是 .
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在平面向量集上也可以定义一个称“序”的关系,记为“”.定义如下:对于任意两个向量,“”当且仅当“”或“”。按上述定义的关系“”,给出如下四个命题:
①若,则;
②若,则;
③若,则对于任意;
④对于任意向量,若,则。
其中真命题的序号为__________
(本小题满分12分)已知函数,且当时,的最小值为2,
(1)求的值,并求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分12分)如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且
(1)证明:平面ABEF平面BCDE;
(2)求平面ABC与平面DEF所成的二面角(锐角)的余弦值.
(本小题满分12分)已知一个袋子里装有只有颜色不同的6个小球,其中白球2个,黑球4个,现从中随机取球,每次只取一球.
(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;
(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.
(本小题满分12分)数列的前n项和为,且
(1)求数列的通项公式;
(2)若数列满足:,求数列的通项公式;
(3)令,求数列的 n项和.
(本小题满分13分)已知函数(其中是自然对数的底数),为导函数。
(1)当时,其曲线在点处的切线方程;
(2)若时,都有解,求的取值范围;
(3)若,试证明:对任意恒成立.