期中备考总动员高三理数学模拟卷【广东】3
【原创】若则“
”是“方程
表示焦点在
轴上的椭圆”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
设函数f(x)=(x>0),观察:f1(x)=f(x)=
, f2(x)=f(f1(x))=
, f3(x)=f(f2(x))=
, f4(x)=f(f3(x))=
……根据以上事实,由归纳推理可得:当n∈N*, n≥2时,fn(x)=f(n-1(x))= .
(坐标系与参数方程选做题)在极坐标系中,直线的方程是
,以极点为原点,以极轴为
轴的正半轴建立直角坐标系,在直角坐标系中,直线
的方程是
.如果直线
与
垂直,则常数
.
【改编】【2014年广东省东莞市高三第二次模拟理】已知函数.
(1)求函数的图象的对称中心;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且
,求a的值.
(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;
(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.
如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,
,
.M为PB的中点.
(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.
【改编】(本小题满分14分)已知函数.
(1)求函数的单调增区间;
(2)若,求实数
的取值范围.