北京市海淀区高三下学期期中练习(一模)文科数学试卷
某单位计划在下月1日至7日举办人才交流会,某人随机选择其中的连续两天参加交流会,那么他在1日至3日期间连续两天参加交流会的概率为( )
A. | B. | C. | D. |
“”是“角是第一象限的角”的( )
A.充分而不必要条件 |
B.必要而不充分条件 |
C.充分必要条件 |
D.既不充分也不必要条件 |
某三棱锥的正视图如图所示,则在下列图①②③④中,所有可能成为这个三棱锥的俯视图的是( )
① ② ③ ④
A.①②③ | B.①②④ | C.②③④ | D.①②③④ |
设全集,用的子集可表示由0,1组成的6位字符串,如:表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.
①若,则表示的6位字符串为 ;
②若, 集合表示的字符串为101001,则满足条件的集合的个数是 .
(本小题满分13分)已知数列的前项和为, ,且是与的等差中项.
(Ⅰ)求的通项公式;
(Ⅱ)若数列的前项和为,且对,恒成立,求实数的最小值.
(本小题满分13分)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
分组(日销售量) |
频率(甲种酸奶) |
[ 0,10] |
0.10 |
(10,20] |
0.20 |
(20,30] |
0.30 |
(30,40] |
0.25 |
(40,50] |
0.15 |
(Ⅰ)写出频率分布直方图中的的值,并作出甲种酸奶日销售量的频率分布直方图;
(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.
(本小题满分14分)如图1,在梯形中,,,,四边形是矩形.将矩形沿折起到四边形的位置,使平面平面,为的中点,如图2.
(Ⅰ)求证:;
(Ⅱ)求证://平面;
(Ⅲ)判断直线与的位置关系,并说明理由.
(本小题满分13分)已知椭圆过点,且离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)若椭圆上存在点关于直线对称,求的所有取值构成的集合,并证明对于,的中点恒在一条定直线上.