广东省惠州市高三4月模拟理科数学试卷
下列命题的说法 错误 的是 ( )
A.若复合命题为假命题,则都是假命题. |
B.“”是“”的充分不必要条件. |
C.对于命题则. |
D.命题“若,则”的逆否命题为:“若,则”. |
多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为 ( )
A. | B. | C. | D. |
对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心。设函数,则( )
A.1 | B. | C. | D. |
某单位为了了解用电量(度)与当天平均气温(°C)之间的关系,随机统计了某4天的当天平均气温与用电量(如右表)。由数据运用最小二乘法得线性回归方程,则__________.
平均气温(°C) |
18 |
13 |
10 |
-1 |
用电量(度) |
25 |
35 |
37 |
63 |
将自然数按如图排列,其中处于从左到右第列从下到上第行的数记为,
如,,则__________;__________.
(几何证明选讲选做题)如图,PA与圆相切于A,PCB为圆的割线,并且不过圆心,已知,,,则圆的半径等于__________.
(本小题满分12分)一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.
(1)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是奇数的概率;
(2)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了次才停止取出卡片,求的分布列和数学期望.
(本小题满分14分)如图,在四棱锥中,底面为直角梯形,,,平面⊥底面,为的中点,是棱上的点,,,.
(1)求证:平面⊥平面;
(2)若二面角为,设,试确定 的值.
(本小题满分14分)已知数列的前项和为,,.
(1)求数列的通项公式;
(2)设数列的前项和为,=+++ +.试比较与的大小.
(本小题满分14分)在直角坐标系中,曲线上的点均在圆外,且对上任意一点,到直线的距离等于该点与圆上点的距离的最小值.
(1)求曲线的方程;
(2)设为圆外一点,过作圆的两条切线,分别与曲线相交于点和.证明:当在直线上运动时,四点的纵坐标之积为定值.