上海市长宁区、嘉定区高三二模理科数学试卷
已知对任意,向量都是直线的方向向量,设数列的前项和为,若,则_____________.
现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.则不同取法的种数为__________.
在平面直角坐标系中,点和点满足按此规则由点得到点,称为直角坐标平面的一个“点变换”.在此变换下,若,向量与的夹角为,其中为坐标原点,则的值为____________.
设定义域为的函数若关于的函数有个不同的零点,则实数的取值范围是____________.
把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则________.
在△中,“”是“”的( )
A.充分非必要条件 |
B.必要非充分条件 |
C.充要条件 |
D.既非充分又非必要条件 |
已知平面直角坐标系内的两个向量,,且平面内的任一向量都可以唯一的表示成为实数),则实数的取值范围是( )
A. | B. |
C. | D. |
极坐标方程()表示的图形是( )
A.两个圆 | B.两条直线 |
C.一个圆和一条射线 | D.一条直线和一条射线 |
在四棱锥中,,分别为侧棱,的中点,则四面体的体积与四棱锥的体积之比为( )
A. | B. | C. | D. |
本题共有2个小题,第1小题满分6分,第2小题满分6分.
在△中,已知,外接圆半径.
(1)求角的大小;
(2)若角,求△面积的大小.
本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,四棱锥的底面为菱形,平面,,,为的中点.
(1)求证:平面;
(2)求平面与平面所成的锐二面角大小的余弦值.
本题共有2个小题,第1小题满分5分,第2小题满分9分.
某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作.
(1)令,,求的取值范围;
(2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆()的左、右焦点分别为、,点,过点且与垂直的直线交轴负半轴于点,且.
(1)求证:△是等边三角形;
(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
(3)设过(2)中椭圆的右焦点且不与坐标轴垂直的直线与交于、两点,是点关于轴的对称点.在轴上是否存在一个定点,使得、、三点共线,若存在,求出点的坐标;若不存在,请说明理由.