高考原创理科数学预测卷 01(福建卷)
已知定义在上的函数满足:,且,,则方程在区间上的所有实根之和为( )
A.-7 | B.-8 | C.-6 | D.-5 |
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2010]上的所有x的个数( )
A.252 | B.502 | C.251 | D.501 |
下列命题中正确的是
①若为真命题,则为真命题
②“,”是“”的充分必要条件
③命题“若,则或”的逆否命题为“若或,则”
④命题,使得,则,使得
上述命题中不正确的是_______
如图,矩形ABCD的四个顶点的坐标分别为A(0,—1),B(,—1),C(,1),D(0,1),正弦曲线和余弦曲线在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是__________
设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数是类周期函数,非零常数为函数的类周期”.现有下面四个关于类周期函数的命题:
①的类周期为-1,那么它是周期为2的周期函数;
②若,则不是类周期函数;
③函数是类周期函数;
④如果函数是类周期函数,那么.
其中是真命题的有___________
已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD
⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(Ⅰ)求证:EF平面PAD;
(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;
下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人
(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数;
(Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?
(Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.
已知椭圆的右焦点,离心率为,过作两条互相垂直的弦,设的中点分别为.
(1)求椭圆的方程;
(2)证明:直线必过定点,并求出此定点坐标;
(3)若弦的斜率均存在,求面积的最大值.
选修4—4:坐标系与参数方程
已知曲线的参数方程: (为参数), 曲线上的点对应的参数,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知直线过点P(1,0),且与曲线于A,B两点,求的范围.