优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学 / 试卷选题

高考原创文科数学预测卷 01(广东卷)

设集合,则(  )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

,则复数(   )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

已知向量,若,则(  )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

下列函数是奇函数的(   )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

某几何体的三视图如图所示,则这个几何体的体积为(   )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

某一考场有64个试室,试室编号为001-064,现根据试室号,采用系统抽样的方法,抽取8个试室进行监控抽查,已抽看了005试室号,则下列可能被抽到的试室号是(   )

A.051 B.052 C.053 D.054
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

执行如图所示程序框图,则其结果输出为(   )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

双曲线的渐近线方程为(  )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

“函数在区间上单调递增”是“”的(   )

A.充分不必要条件 B.必要不充分条件
C.既充分又必要条件 D.既不充分又不必要条件
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

,则,那么称非空集合为“对称集合”,已知全集,则下列集合运算结果是“对称集合”的是(   )

A. B. C. D.
来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

已知变量满足约束条件,且的最大值为_______.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

已知曲线在点处切线为,则实数_______.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

首项为0的等差数列,若,则其前5项的和________.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(坐标系与参数方程选做题)曲线为参数),若以点为极点,轴正半轴为极轴建立极坐标系,则该曲线的极坐标方程是      

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(几何证明选讲选做题)如图,是圆的直径,是圆内接的高,若,则      

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

.(本小题满分12分)已知函数
(1)求的值;
(2)若中,,求

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(本小题满分12分)某校从参加“百科知识”竞赛的学生中,选取40名学生,将他们的成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.

(1)求分数在内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试的平均分;
(3)若从成绩在的学生中采用分层抽样抽取5人,再从中抽取2人,求抽到的学生中恰好一个成绩在,一个成绩在的概率.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,平面平面,其中为正方形,为直角梯形,

(1)求证:平面
(2)求点到平面的距离.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知正项数列对任意的,都有
(1)求的值;
(2)求数列的通项公式
(3)设数列的前项和为,当,证明:

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知直线经过椭圆的右焦点和上顶点.
(1)求椭圆的标准方程;
(2)设直线与椭圆交于,点关于轴的对称点不重合),则直线轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知

(本小题满分14分)定义在的奇函数有极小值为
(1)求的解析式;
(2)若曲线有三条不同的切线相交于点,求实数的取值范围.

来源:2015年高考原创文科数学预测卷 01(广东卷)
  • 题型:未知
  • 难度:未知