优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学 / 试卷选题

专题45 动态几何之和差问题(压轴题)

(2014年贵州安顺3分)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为(  )

A. B. C. D.
来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年贵州安顺3分)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为(  )

A. B. C. D.
来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年贵州黔东南4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为       

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年湖南张家界3分)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN于点F,P为EF上任意一点,,则PA+PC的最小值为       

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年湖南长沙3分)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是       

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年江苏无锡2分)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是       

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年浙江绍兴5分)把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是       

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年广东梅州11分)如图,已知抛物线与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.

(1)直接写出A、D、C三点的坐标;
(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;
(3)设点C关于抛物线对称的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年广东深圳9分)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.

(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使|DP﹣AP|最大.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年贵州贵阳12分)如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点.若AB=6cm.

(1)AE的长为        cm;
(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;
(3)求点D′到BC的距离.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖北鄂州12分)如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.

(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.
(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值?请说明理由.
(3)将抛物线C1作适当平移,得到抛物线C2,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年湖北咸宁10分)如图1,P(m,n)是抛物线上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.
【探究】
(1)填空:当m=0时,OP=        ,PH=        ;当m=4时,OP=        ,PH=       
【证明】
(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.
【应用】
(3)如图2,已知线段AB=6,端点A,B在抛物线上滑动,求A,B两点到直线l的距离之和的最小值.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖南郴州10分)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.

(1)求这条抛物线的解析式;
(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;
(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖南湘西22分)如图,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B(2,)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,)在y轴上,过点(0,)作直线l与x轴平行.

(1)求抛物线的解析式和直线BC的解析式.
(2)设点D(x,y)是线段BC上的一个动点(点D不与B,C重合),过点D作x轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?
(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS的形状,并说明理由;
(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年江苏连云港14分)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.
(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.
(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年山东日照14分)如图1,在菱形OABC中,已知OA=,∠AOC=60°,抛物线y=ax2+bx+c(a≠0)经过O,C,B三点.
(1)求出点B、C的坐标并求抛物线的解析式.
(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.
①当OP+PC的最小值时,求出点P的坐标;
②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PEF相似?若存在,请求出点M的坐标;若不存在,请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年四川甘孜12分)在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).
(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;
(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年四川泸州12分)如图,已知一次函数的图象l与二次函数的图象都经过点B(0,1)和点C,且图象过点A(,0).

(1)求二次函数的最大值;
(2)设使成立的x取值的所有整数和为s,若s是关于x的方程的根,求a的值;
(3)若点F、G在图象上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P 的坐标.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年四川绵阳14分)如图,抛物线(a≠0)的图象过点M,顶点坐标为N,且与x轴交于A、B两点,与y轴交于C点.

(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年四川攀枝花12分)如图,抛物线(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.

(1)请直接写出A、B两点的坐标;
(2)求抛物线的解析式;
(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;
(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年四川遂宁12分)已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).
(1)求该抛物线的解析式;
(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.
(3)请你参考(2)中结论解决下列问题:
(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.
(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知

(年海南省14分)如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.
(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.

来源:专题45 动态几何之和差问题(压轴题)
  • 题型:未知
  • 难度:未知