专题41 动态几何之动点形成的四边形存在性问题(预测题)
如图,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB边向点B以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).
⑴当其中一点到达端点时,另一点也随之停止运动.
①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形;②当t为何值时,四边形PQCD为等腰梯形.
⑵若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形.
如图,抛物线与x轴交于点A,B,与y轴交于点C。点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由。
如图,已知点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.问:在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.
如图,在直角坐标系中,点A的坐标为(8,0),点B(t,b)在直线y=b上运动,点D、E、F分别为OB、OA、AB的中点,其中b是大于零的常数。设直线y=b与y轴交于点C,问:四边形DEFB能不能是矩形?若能,求出t的值;若不能,说明理由。
如图, 在Rt△ABC中,∠C=90º, AC=9,BC=12,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ. 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=__________, PD=___________;
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.