江苏省无锡市新区八年级下学期期中考试数学试卷
新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86.则这七天空气质量变化情况最适合用哪种统计图描述( )
A.条形统计图 | B.扇形统计图 | C.折线统计图 | D.以上都不对 |
下列说法中正确的是( )
A.“打开电视,正在播放动画片《喜洋洋和灰太狼》”是必然事件; |
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖; |
C.抛掷一个正方体骰子,点数为奇数的概率是; |
D.为了了解“嫦娥三号”卫星零部件的状况,检测人员采用了普查的方式. |
一个不透明口袋中装有3个红球2个白球,除颜色外都相同,从中任意摸出一个球,下列叙述正确的是( )
A.摸到红球是必然事件 | B.摸到白球是不可能事件 |
C.摸到红球的可能性比白球大 | D.摸到白球的可能性比红球大 |
根据下列条件,能判断出一个四边形是平行四边形的是( )
A.一组对边相等 | B.两条对角线互相垂直 |
C.一组对边平行 | D.两条对角线互相平分 |
如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )
A.30° B.45° C.90° D.135°
平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是( )
A.8和14 | B.10和14 | C.18和20 | D.10和34 |
矩形具有而菱形不一定具有的性质是( )
A.邻边相等 | B.对角线相等 |
C.对角线互相平分 | D.对角线互相垂直 |
如图,在矩形ABCD中,AB=6,BC=8,AC与BD相交于O, E为DC的一点,过点O作OF⊥OE交BC于F,记,则关于d的正确的结论是( )
A. | B. | C. | D. |
如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B……;依此类推,则平行四边形的面积为( )
A. B. C. D.
为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是 .
已知四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是 (只需填一个你认为合适的条件即可).
某班围绕“舞蹈、乐器、声乐、其它等四个项目中,你最喜欢哪项活动(每人只限一项)的问题,对全班50名学生进行问卷调查,并将调查结果制作成如图所示的扇形统计图,则可知该班喜欢乐器的学生有 名.
如图:在□ABCD中,AE⊥BC于E,AF⊥CD于F.若AE=4,AF=6,且□ABCD的周长为40,则□ABCD的面积为 .
已知在直角坐标系中有一个△ABC,其中 B(-1,0),C(9,0),点A落在第一象限,DE是△ABC的中位线,F是DE的中点.当AB=AC=13时,则点F的坐标为 .
已知在△ABC中,AC=3,BC=4,AB=5,点P是AB上 (不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连结EF,M为EF的中点, 则CM的最小值为 .
(本题6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.
(1)将△ABC绕点C顺时针旋转得到△A1B1C1;
(2)作△ABC关于点O成中心对称的△A2B2C2.
(本题8分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):
时速数据段 |
频数 |
频率 |
30﹣40 |
10 |
0.05 |
40﹣50 |
36 |
___ |
50﹣60 |
___ |
0.39 |
60﹣70 |
___ |
___ |
70﹣80 |
20 |
0.10 |
总计 |
200 |
1 |
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果汽车时速超过60千米即为违章,则这次检测到的违章车辆共有 辆.
(本题6分)把一副扑克牌中的三张黑桃牌(它们的正面数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你分析游戏规则对双方是否公平,并说明理由.
(本题8分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ABE≌△CDF;(2)BE∥DF.
(本题8分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF∥CE.
(1)说明四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
(本题8分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=6,∠BCD=120°,求四边形AODE的面积.
如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为t秒.
① 若△NPH的面积为1,求t的值;
② 点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.