山东省淄博市沂源县九年级第一次模拟考试数学试卷
下列各数:3.14,,3π,sin60°,tan45°,,2.65867中,是无理数的个数是
A.1 | B.2 | C.3 | D.4 |
“黑洞”是恒星演化的最后阶段.根据有关理论,当一颗恒星衰老时,其中心的燃料(氢)已经被耗尽,在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体.如果这一星体的质量超过太阳质量的三倍,那么就会引发另一次大坍缩.当这种收缩使得它的半径达到施瓦氏(Schwarzschild)半径后,其引力就会变得相当强大,以至于光也不能逃脱出来,从而成为一个看不见的星体——黑洞.施瓦氏半径(单位:米)的计算公式是,其中 牛·米2/千克2,为万有引力常数;M表示星球的质量(单位:千克);米/秒,为光在真空中的速度.已知太阳的质量为千克,则可计算出太阳的施瓦氏半径为
A.米 | B.米 |
C.米 | D.米 |
为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为
A.40%a元 | B.60%a元 | C.元 | D.元 |
已知一几何体的主视图、左视图都是边长为a的等边三角形,俯视图是以O为圆心,直径为a的圆,则该几何体的侧面积为
A.π | B.π | C.π | D.π |
某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是
A.分钟 | B.分钟 |
C.分钟 | D.分钟 |
如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA'B'C'的位置.若OB=,∠C=120°,则点B'的坐标为
A.(3,) | B.(3,-) | C.() | D.() |
如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方厘米,则此方格纸的面积为
A.11平方厘米 | B.12平方厘米 |
C.13平方厘米 | D.14平方厘米 |
如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是
如图,四边形ABCD是矩形,AB:AD = 4:3,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,连接DE,则DE:AC的值是
A.1:3 | B.3:8 | C.8:27 | D.7:25 |
如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
A.3 B. C. D.4
阅读对话,解答问题:
分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_________.
观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10
个点,第3个图形中共有19个点,…
按此规律第5个图形中共有点的个数是 .
如图,在△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)连结BD,求证:BD平分∠CBA.
某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中a的值,并求出该校初一学生总数;
(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图;
(3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数;
(4)在这次抽样调查中,众数和中位数分别是多少?
(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为.
(1)求小山的高度;
(2)求铁架的高度.
在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)连结AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)连结AE并延长,交BC的延长线于点G(如图2所示),若AB=2,AD=2,求线段BC和EG的长.