2015年初中毕业升学考试(河北卷)数学
下列说法正确的是( )
A.1的相反数是-1 | B.1的倒数是-1 |
C.1的立方根是±1 | D.-1是无理数 |
一张菱形纸片按图1-1、图1-2依次对折后.再按图l-3打出一个圆形小孔,则展开铺平后的图案是( )
A. | B. | C. | D. |
下列运算正确的是( )
A. | B.6×107=6000000 | C.(2a)2=2a2 | D.a3·a2=a5 |
如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )
A.△ABE | B.△ACF | C.△ABD | D.△ADE |
如图,AB//EF,CD⊥EF,∠BAC=50°,则∠ACD=( )
A.120° | B.130° | C.140° | D.150° |
已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )
A. | B. | C. | D. |
一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是( )
A. | B. | C. | D. |
利用加减消元法解方程组,下列做法正确的是( )
A.要消去y,可以将①×5+②×2 |
B.要消去x,可以将①×3+②×(-5) |
C.要消去y,可以将①×5+②×3 |
D.要消去x,可以将①×(-5)+②×2 |
若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )
A.a<l | B.a>1 | C.a≤1 | D.a≥1 |
如图,直线l:与直线y=a(a为常数)的交点在第四象限,则a可能在( )
A.1<a<2 | B.-2<a<0 |
C.-3≤a≤-2 | D.-10<a<-4 |
如图,点
为定点,定直线
,
是
上一动点.点
,
分别为
,
的中点,对于下列各值:
①线段
的长;
②
的周长;
③
的面积;
④直线
之间的距离;
⑤
的大小.
其中会随点P的移动而变化的是( )
图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )
A.甲、乙都可以 |
B.甲、乙都不可以 |
C.甲不可以,乙可以 |
D.甲可以,乙不可以 |
平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=____°.
如图,∠BOC=9°,点A在OB上,且OA=1.按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;
……
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=____.
老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:
-3x=x2-5x+1.
(1)求所捂的二次三项式:
(2)若,求所捂二次三项式的值.
嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图,在四边形ABCD中,
BC=AD,
AB=____.
求证:四边形ABCD是____四过形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明:
证明:
(3)用文宇叙述所证命题的逆命题为____________________.
水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y毫米.
(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);
(2)仅放入6个大球后,开始放入小球,且小球个数为x小.
①求y与x小的函数关系式(不必写出x小的范围);
②限定水面高不超过260毫米,最多放入几个小球?
某厂生产A,B两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:
A,B产品单价变化统计表
|
第一次 |
第二次 |
第三次 |
A产品单价(元/件) |
6 |
52 |
63.5 |
B产品单价(元/件) |
3.5 |
4 |
3 |
并求得A产品三次单价的平均数和方差:
:.
(1)补全图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了____%;
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小:
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1.求m的值.
如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.
(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标:
(2)设点C的级坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y1的大小;
(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.
平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).
发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?
(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:
(3)如图,当点P恰好落在BC边上时.求α及S阴影.
拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究当半圆K与矩形ABCD的边相切时,求sin α的值.