2015年初中毕业升学考试(江苏连云港卷)数学
2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18 000元.其中“18 000”用科学记数法表示为
A. | B. | C. | D. |
某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )
|
甲 |
乙 |
丙 |
丁 |
||
|
8 |
9 |
9 |
8 |
||
1 |
1 |
1.2 |
1.3 |
A.甲 B.乙 C.丙 D.丁
已知四边形ABCD,下列说法正确的是( )
A.当AD=BC,AB//DC时,四边形ABCD是平行四边形 |
B.当AD=BC,AB=DC时,四边形ABCD是平行四边形 |
C.当AC=BD,AC平分BD时,四边形ABCD是矩形 |
D.当AC=BD,AC⊥BD时,四边形ABCD是正方形 |
如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为( )
A. | B. | C. | D. |
如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t (单位:天)的函数关系.已知日销售利润=日销售量×每件产品的销售利润.下列结论错误的是( )
A.第24天的销售量为200件 |
B.第10天销售一件产品的利润是15元 |
C.第12天与第30天这两天的日销售利润相等 |
D.第30天的日销售利润是750元 |
已知一个几何体的三视图如下,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为 .
如图,在△ABC中,,,直线////,与之间距离是1,与之间距离是2.且,,分别经过点A, B,C,则边AC的长为 .
随着我市社会经济的发展和交通状况的改善,我市的旅游事业得到了高速发展.某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽取部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成如下两幅尚不完整的表和图:
组别 |
个人年消费金额(元) |
频数 (人数) |
频率 |
A |
18 |
0.15 |
|
B |
a |
b |
|
C |
|
|
|
D |
24 |
0.20 |
|
E |
12 |
0.10 |
|
|
合计 |
c |
1.00 |
根据以上信息回答下列问题:
(1) , , ,并将条形统计图补充完整;
(2)这次调查中,个人年消费金额的中位数出现在 组;
(3)若这个企业有3000名员工,请你估计个人年旅游消费金额在6000元以上的人数.
九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会.抽奖方案如下:将一副扑克牌中点数为“2”、“3”、“3”、“5”、“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖.记每次抽出两张牌点数之差为x,按下表要求确定奖项.
奖项 |
一等奖 |
二等奖 |
三等奖 |
(1)用列表或画树状图的方法求出甲同学获一等奖的概率;
(2)是否每次抽奖都会获奖,为什么?
如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.
(1)求证:;
(2)判断AF与BD是否平行,并说明理由.
在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.
(1)求每张门票原定的票价;
(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
已知如图,在平面直角坐标系中,直线与轴、轴分别交于A,B两点,P是直线AB上一动点,⊙的半径为1.
(1)判断原点O与⊙的位置关系,并说明理由;
(2)当⊙过点B时,求⊙被轴所截得的劣弧的长;
(3)当⊙与轴相切时,求出切点的坐标.
如图,在△ABC中,,,D为AC延长线上一点,.过点D作//,交的延长线于点H.
(1)求的值;
(2)若,求AB的长.
在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△与△面积之和的最大值,并简要说明理由.