专题4:三角函数与三角形(文)
【2015高考山东,文4】要得到函数 的图象,只需要将函数的图象( )
A.向左平移个单位 |
B.向右平移个单位 |
C.向左平移个单位 |
D.向右平移个单位 |
【2015高考陕西,文6】“”是“”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分也不必要 |
【2015高考上海,文17】已知点 的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ).
A. | B. | C. | D. |
【2015高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y=3sin(x+Φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为____________.
【2015高考湖南,文15】已知>0,在函数y=2sinx与y=2cosx的图像的交点中,距离最短的两个交点的距离为2,则 =_____.
【2015高考四川,文13】已知sinα+2cosα=0,则2sinαcosα-cos2α的值是______________.
【2015高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度_________m.
【2015高考福建,文21】已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)将函数的图象向右平移个单位长度,再向下平移()个单位长度后得到函数的图象,且函数的最大值为2.
(ⅰ)求函数的解析式;
(ⅱ)证明:存在无穷多个互不相同的正整数,使得.
【2015高考湖北,文18】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 |
|||||
|
|
|
|||
0 |
5 |
|
0 |
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;
(Ⅱ)将图象上所有点向左平行移动个单位长度,得到图象,求的图象离原点最近的对称中心.
【2015高考湖南,文17】(本小题满分12分)设的内角的对边分别为.
(Ⅰ)证明:;
(Ⅱ)若,且为钝角,求.
【2015高考四川,文19】已知A、B、C为△ABC的内角,tanA、tanB是关于方程x2+px-p+1=0(p∈R)两个实根.
(Ⅰ)求C的大小
(Ⅱ)若AB=1,AC=,求p的值
【2015高考天津,文16】(本小题满分13分)△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为,
(Ⅰ)求a和sinC的值;
(Ⅱ)求 的值.
【2015高考新课标1,文17】(本小题满分12分)已知分别是内角的对边,.
(Ⅰ)若,求
(Ⅱ)若,且 求的面积.
【2015高考重庆,文18】已知函数f(x)=sin2x-.
(Ⅰ)求f(x)的最小周期和最小值,
(Ⅱ)将函数f(x)的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图像.当x时,求g(x)的值域.