高一数学第三套
2015年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”.标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300 000用科学记数法表示为( ).
A.3×106 | B.3×105 | C.0.3×106 | D.30×104 |
在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为
A. | B. | C. | D. |
如图,直线l:与直线y=a(a为常数)的交点在第四象限,则a的值可能在( )
A.1<a<2 | B.-2<a<0 |
C.-3≤a≤-2 | D.-10<a<-4 |
沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为( )
A.20(1+2x)=80 | B.2×20(1+x)=80 |
C.20(1+x2)=80 | D.20(1+x)2=80 |
若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为( )
A.m>1 | B.m>0 | C.m>﹣1 | D.﹣1<m<0 |
如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是( )
A.线段AE的中垂线与线段AC的中垂线的交点 |
B.线段AB的中垂线与线段AC的中垂线的交点 |
C.线段AE的中垂线与线段BC的中垂线的交点 |
D.线段AB的中垂线与线段BC的中垂线的交点 |
如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:
①△ADG≌△FDG;
②GB=2AG;
③△GDE∽△BEF;
④S⊿BEF=。
在以上4个结论中,正确的有( )个。
A.1 | B.2 | C.3 | D.4 |
小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30o,小丽向前走了10米到达点E,此时的仰角为60o,求旗杆的高度。
我区某学校为了提升学生的体艺素养,准备开设空手道、素描、剪纸三项活动课程,为了解学生对各项活动的兴趣,随机抽取了部分学生进行调查(每人从中必须选取一项,且只能选一项),将调查结果绘制成下面两个统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是____________;
(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.
如图,在平面直角坐标系中,一次函数与反比例函数的图象交于,两点,一次函数的图象与y轴交于点.
(1)求一次函数的解析式;
(2)点是轴上一点,且的面积是面积的2倍,求点的坐标.
如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.
(1)依题意补全图形;
(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.
阅读下面的材料:
小敏在数学课外小组活动中遇到这样一个问题:
如果,β都为锐角,且,,求的度数.
小敏是这样解决问题的:如图1,把,放在正方形网格中,使得,,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰直角三角形,因此可求得="∠ABC" = °.
请参考小敏思考问题的方法解决问题:
如果,都为锐角,当,时,在图2的正方形网格中,利用已作出的锐角,画出∠MON=,由此可得=______°.
如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m。
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.
(1)点A的坐标为,则点和射线OA之间的距离为________,点和射线OA之间的距离为________;
(2)如果直线和双曲线之间的距离为,那么k= ;(可在图1中进行研究)
(3)点E的坐标为(1,),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.
①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)
②将射线OE,OF组成的图形记为图形W,抛物线与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.