高一数学第九套
如图所示,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于( )
A. | B. | C. | D. |
甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表
选手 |
甲 |
乙 |
丙 |
丁 |
方差(秒2) |
0.020 |
0.019 |
0.021 |
0.022 |
则这四人中发挥最稳定的是( )
A.甲 B.乙 C.丙 D.丁
某商店举办促销活动,促销的方法是将原价x元的衣服以() 元出售,则下列说法中,能正确表达该商店促销方法的是( )
A.原价减去10元后再打8折 |
B.原价打8折后再减去10元 |
C.原价减去10元后再打2折 |
D.原价打2折后再减去10元 |
如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3) | B.(4,3) | C.(3,1) | D.(4,1) |
如图所示,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是_________.
如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.
如图1,菱形ABCD的对角线交于点O,AC=2BD,点P是AO上一个动点,过点P 作AC的垂线交菱形的边于M,N两点.设AP=x,△OMN的面积为y,表示y与x的函数关系大致如图2所示的抛物线.
(1)图2所示抛物线的顶点坐标为 ;
(2)菱形ABCD的周长为 .
如图所示,在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(-6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=,求△AOB的面积.
经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.
(1)一辆正常行使的汽车经过某十字路口,则它向左转的概率为 ;
(2)现有甲、乙两辆汽车要经过这个十字路口,请用树形图或列表法表示出这两辆汽车行驶方向所有可能的结果,并求这两辆汽车都向左转的概率.
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.求线段CF的长.
一辆客车从甲地出发前往乙地,平均速度(千米/小时)与所用时间(小时)的函数关系如图所示,其中.
(1)直接写出与的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶千米,小时后两车相遇.
①求两车的平均速度;
②甲、乙两地间有两个加油站、,它们相距千米,当客车进入加油站时,货车恰好进入加油站(两车加油的时间忽略不计),求甲地与加油站的距离.
为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:
根据图表的信息,回答下列问题:
(1)本次抽查的学生共有 名;
(2)表中和所表示的数分别为: , ,并在图中补全条形统计图;
(3)若该校共有名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为米,面积为平方米.
(1)求关于的函数关系式;
(2)当为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,求出其边长;如果不能,说明理由.
已知:如图,点A(3,4)在直线y=kx上,过A作AB⊥x轴于点B.
(1)求k的值;
(2)设点B关于直线y=kx的对称点为C点,求ΔABC外接圆的面积;
(3)抛物线y=-1与x轴的交点为Q,试问在直线y=kx上是否存在点P,使得
∠CPQ=∠OAB,如果存在,请求出P点的坐标;如果不存在,请说明理由.
(1)如图1是某个多面体的表面展开图.
①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;
②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)
(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)