广东省东莞市五校联考中考一模数学试卷
月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为( )
A.3.844×108 | B.3.844×107 | C.3.844×106 | D.38.44×106 |
下列运算正确的是( )
A.2a2+a=3a3 | B.(-a)3•a2=-a6 | C.(-a)2÷a=a | D.(2a2)3=6a6 |
如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( )
A.30° | B.40° | C.45° | D.60° |
如图, P是∠α的边OA上一点,且点P的坐标为(3,4),则sinα=( )
A. | B. | C. | D. |
一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是( )
A.m>1 | B.m=1 | C.m<1 | D.m≤1 |
如图,点A、B、C在圆O上,∠A=60°,则∠BOC=( )
A.60° B.90° C.120° D.135°
若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(,y3),则y1,y2,y3的大小关系是( )
A.y1>y2>y3 | B.y1>y3>y2 | C.y2>y1>y3 | D.y3>y1>y2 |
已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为 .
如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可).
如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 .
如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
如图,海中有一灯塔C,它的周围11海里内有暗礁.一渔船以18海里/时的速度由西向东航行,在A点测得灯塔C位于北偏东60°的方向上,航行40分钟到达B点,此时测得灯塔C位于北偏东30°的方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?
山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?
(2)该车行计划新进一批A型车和新款B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:
|
A型车 |
B型车 |
进货价格(元) |
1100 |
1400 |
销售价格(元) |
今年的销售价格 |
2000 |
甲口袋中装有2个相同的小球,它们分别写有数值-1,5;乙口袋中装有3个相同的小球,它们分别写有数值-4,2,3.现从甲口袋中随机取一球,记它上面的数值为m,再从乙口袋中随机取一球,记它上面的数值为n.设点A的坐标为(m,n).
(1)请用树状图或列表法,列出(m,n)所有可能的结果;
(2)求点A落在第一象限的概率.
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).
(1)求二次函数的解析式;
(2)求函数图象的顶点坐标及D点的坐标;
(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E=,求DE的长.
如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)写出∠PBD的度数和点D的坐标(点D的坐标用t表示);
(2)探索△POE周长是否随时间t的变化而变化,若变化,说明理由;若不变,试求这个定值.
(3)当t为何值时,△PBE为等腰三角形?