湖北省黄石市6月中考模拟数学试卷
今年我市参加2015届中考的人数约是105 000,数据105 000用科学记数法表示为( )
A.10.5×104 | B.105×103 | C.1.05×105 | D.0.105×106 |
下列计算正确的是( )
A.a2+a3=a5 | B.a6÷a2=a3 | C.(a2)3=a6 | D.2a×3a=6a |
圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为( )
A.3cm | B.6cm | C.9cm | D.12cm |
为了参加市中学生篮球运动后,某校篮球队准备购买10双运动鞋,经统计10双运动鞋的号码(cm)如表所示:
尺码 25 25.5 26 26.5 27
购买量(双)2 4 2 1 1
则这10双运动鞋尺码的众数和中位数分别是( )
A.25.5cm 26cm | B.26cm25.5cm |
C.26cm26cm | D.25.5cm 25.5cm |
有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为( )
A.x=1,y=3 | B.x=3,y=2 | C.x=4,y=1 | D.x=2,y=3 |
如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B(x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为( )
A.k=,b="2" | B.k=,b="1" | C.k=,b= | D.k=,b= |
如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是( )
A. B.C. D.
设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=__________.
如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是__________.
如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是__________.
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=(x>0)的图象过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数的一个公共点.对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,则点P横坐标a的取值范围__________.
如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.
在1个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外,其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白色的概率为0.5.
(1)求口袋中红球的个数;
(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球,不放回,再找出一个画树状图的方法求甲摸的两个球且得2分的概率.
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=﹣(x﹣60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=﹣(100﹣x)2+(100﹣x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
(1)如图①,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D.求证:AB2=AD•AC;
(2)如图②,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC于点F.=1,求的值;
(3)在Rt△ABC中,∠ABC=90°,点D为直线BC上的动点(点D不与B、C重合),直线BE⊥AD于点E,交直线AC于点F.若=n,请探究并直接写出的所有可能的值(用含n的式子表示),不必证明.