广东省惠州市高三上学期第二次调研考试理科数学试卷
设集合,集合,则等于( )
A.(1,2) | B.(1,2] | C.[1,2) | D.[1,2] |
在复平面内,复数所对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
已知两个非零单位向量的夹角为,则下列结论不正确的是( )
A.在方向上的投影为 |
B. |
C. |
D. |
一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球表面积( )
A. | B. | C. | D. |
惠州市某机构对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如右图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是( )
A.岁 | B.岁 |
C.岁 | D.岁 |
函数(其中)的图像如图所示,为了得到的图像,只需将的图像( )
A.向左平移个长度单位 |
B.向右平移个长度单位 |
C.向左平移个长度单位 |
D.向右平移个长度单位 |
用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数有( )
A.144个 | B.120个 | C.96个 | D.72个 |
如图,正五边形的边长为2,甲同学在中用余弦定理解得,乙同学在中解得,据此可得的值所在区间为( )
A. | B. | C. | D. |
若数列满足(为常数,,),则称数列为等方差数列,为公方差,已知正数等方差数列的首项,且,,成等比数列,,设集合,取的非空子集,若的元素都是整数,则为“完美子集”,那么集合中的完美子集的个数为 .
(本小题满分12分)已知是公差为2的等差数列,且是与的等比中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和.
(本小题满分12分)某工厂生产甲、乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:
(Ⅰ)试分别估计芯片甲,芯片乙为合格品的概率;
(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的概率分布列和数学期望值.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.
(Ⅰ)求证:;
(Ⅱ)求二面角余弦值.
(本小题满分12分)已知椭圆的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线交椭圆于两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分12分)已知函数.
(Ⅰ)求函数的最大值;
(Ⅱ)若函数与有相同极值点.
①求实数的值;
②若对于(为自然对数的底数),不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4-1:几何证明选讲
如图,在中,,以为直径的圆交于点,点是边的中点,连接交圆于点.
(Ⅰ)求证:是圆的切线;
(Ⅱ)求证:.
(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:.
(Ⅰ)求直线的极坐标方程;
(Ⅱ)求直线与曲线交点的极坐标.