中考真题分项汇编 第2期 专题6 函数的图象与性质
(·辽宁朝阳)如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
(·辽宁抚顺)直线()与直线()的交点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
(·辽宁阜新)反比例函数的图象位于平面直角坐标系的( )
A.第一、三象限 | B.第二、四象限 |
C.第一、二象限 | D.第三、四象限 |
(·辽宁辽阳)如图,直线与(且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式的解集为( )
A.x≥﹣1 | B.x≥3 | C.x≤﹣1 | D.x≤3 |
(·辽宁辽阳)如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为( )
A.1 | B.2 | C.3 | D.4 |
(·辽宁盘锦)如图是二次函数()图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②;③9a﹣3b+c<0;④b﹣4a=0;⑤方程的两个根为,,其中正确的结论有( )
A.①③④ | B.②④⑤ | C.①②⑤ | D.②③⑤ |
(·辽宁盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是( )
A. |
B. |
C. |
D. |
(·黑龙江大庆)已知二次函数,当x时,函数值为;当时,函数值为,若,则下列表达式正确的是( )
A. | B. |
C. | D. |
(·黑龙江大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线的交点,且AP=2AB,则满足条件的点P的个数是( )
A.0个 | B.1个 | C.2个 | D.3个 |
(·黑龙江牡丹江)函数y=中,自变量x的取值范围是( ).
A.x>0 | B.x≥0 | C.x<0 | D.x≤0 |
(·黑龙江牡丹江)抛物线y=3x2+2x﹣1向上平移4个单位长度后的函数解析式为( ).
A.y=3x2+2x﹣5 | B.y=3x2+2x﹣4 |
C.y=3x2+2x+3 | D.y=3x2+2x+4 |
(·黑龙江牡丹江)在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是( ).
A. |
B. |
C. |
D. |
(·黑龙江牡丹江)在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是( ).
A. |
B. |
C. |
D. |
(·吉林长春)如图,在平面直角坐标系中,点在直线上.连结将线段绕点顺时针旋转,点的对应点恰好落在直线上,则的值为 ( )
A. | B. | C. | D. |
(·辽宁本溪)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线()上,则k的值为( )
A.4 | B.﹣2 | C. | D. |
(·辽宁本溪)如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是( )
A. |
B. |
C. |
D. |
(·辽宁锦州)在同一坐标系中,一次函数与二次函数的图象可能是( )
A. |
B. |
C. |
D. |
(·辽宁朝阳)一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系,已知足球被踢出后经过4s落地,则足球距地面的最大高度是 m.
(·辽宁抚顺)如图,过原点O的直线AB与反比例函数()的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为 .
(·辽宁阜新)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 折.
(·黑龙江牡丹江)抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a= .
(·吉林长春)如图,在平面直角坐标系中,点在函数的图象上,过点分别作轴、轴的垂线,垂足分别为,取线段的中点,连结并延长交轴于点,则的面积为 .
(·吉林长春)如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为 .
(·辽宁锦州)如图,点A在双曲线上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是 .
(·辽宁朝阳)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.
(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);
(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.
(·辽宁盘锦)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.
(1)a= ,b= ;
(2)直接写出、与x之间的函数关系式;
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
(·黑龙江大庆)如图,一次函数的图象与反比例函数的图象交于A(﹣1,m)、B(n,﹣1)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.
(·黑龙江牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:
(1)求抛物线的解析式;
(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
(·黑龙江牡丹江)甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.
请结合图象信息解答下列问题:
(1)直接写出a的值,并求甲车的速度;
(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;
(3)乙车出发多少小时与甲车相距15千米?直接写出答案.
(·吉林省)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.
(·吉林省)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).
(1)求k的值;
(2)直接写出阴影部分面积之和.