优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学 / 试卷选题

中考真题分项汇编 第2期 专题12 探索性问题

在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为( ).

A.7 B.8 C.8或17 D.7或17
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁本溪)在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且=1:8,则AD=           cm.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,过原点O的直线AB与反比例函数)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为     

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁辽阳)如图,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一个正方形A1B1C1D1,使点A1,D1分别在AC,BC边上,边B1C1在AB边上;在△BC1D1在截出第二个正方形A2B2C2D2,使点A2,D2分别在BC1,D1C1边上,边B2C2在BD1边上;…,依此方法作下去,则第n个正方形的边长为              

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

若关于x的一元二次方程有两个不相等的实数根,则m的值可能是      (写出一个即可).

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁本溪)如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是        

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在△ABC中,点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC,从中选择一个条件使四边形BECF是菱形,并给出证明,你选择的条件是      (只填写序号).

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
 
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌            ,得EH=ED.
在Rt△HBE中,由        定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是                  
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,已知经过点D(2,)的抛物线(m为常数,且m>0)与x轴交于点A、B(点A位于B的左侧),与y轴交于点C.

(1)填空:m的值为     ,点A的坐标为               
(2)根据下列描述,用尺规完成作图(保留作图痕迹,不写作法):连接AD,在x轴上方作射线AE,使∠BAE=∠BAD,过点D作x轴的垂线交射线AE于点E;
(3)动点M、N分别在射线AB、AE上,求ME+MN的最小值;
(4)t是过点A平行于y轴的直线,P是抛物线上一点,过点P作l的垂线,垂足为点G,请你探究:是否存在点P,使以P、G、A为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.

(1)如图①,当∠ABC=45°时,求证:AD=DE;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.

(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,抛物线交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且,求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁辽阳)菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.

(1)如图1,当∠ABC=90°时,△OEF的形状是                 
(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;
(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且时,直接写出线段CE的长.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁辽阳)如图1,平面直角坐标系中,直线与抛物线相交于A,B两点,其中点A在x轴上,点B在y轴上.

(1)求抛物线的解析式;
(2)在抛物线上存在一点M,使△MAB是以AB为直角边的直角三角形,求点M的坐标;
(3)如图2,点E为线段AB上一点,BE=2,以BE为腰作等腰Rt△BDE,使它与△AOB在直线AB的同侧,∠BED=90°,△BDE沿着BA方向以每秒一个单位的速度运动,当点B与A重合时停止运动,设运动时间为t秒,△BDE与△AOB重叠部分的面积为S,直接写出S关于t的函数关系式,并写出自变量t的取值范围.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.

(1)请直接写出线段BE与线段CD的关系:       
(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),
①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;
②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.

(1)求抛物线解析式;
(2)如图2,当点F恰好在抛物线上时,求线段OD的长;
(3)在(2)的条件下:
①连接DF,求tan∠FDE的值;
②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.

(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=     

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图①,一次函数的图象与二次函数的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).

(1)当m=﹣1,n=4时,k=      ,b=     
当m=﹣2,n=3时,k=      ,b=     
(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;
(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.
①当m=﹣3,n>3时,求的值(用含n的代数式表示);
②当四边形AOED为菱形时,m与n满足的关系式为            
当四边形AOED为正方形时,m=        ,n=     

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁本溪)如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)

(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD      ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是            
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁本溪)如图,抛物线)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合.

(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP时直角三角形时,请直接写出所有符合条件的点P坐标.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁锦州)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁锦州)开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是                  
(2)请直接写出y与x之间的函数关系式                  
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).

(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是               
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(·辽宁锦州)如图,在平面直角坐标系中,抛物线经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.

(1)求该抛物线的解析式;
(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;
(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知