中考真题分项汇编 第1期 专题9 三角形
在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C等于( )
A.45° | B.60° | C.75° | D.90° |
如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;
②AD⊥EF;
③当∠A=90°时,四边形AEDF是正方形;
④AE+DF=AF+DE.
其中正确的是( )
A.②③ | B.②④ | C.①③④ | D.②③④ |
如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△FCE与△EDF全等( ).
A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF
如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( ).
A. | B.2 | C.3 | D. |
如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则_________.
4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为,B处的俯角为.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是 米.
(本小题满分10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.
求证:(1)△ACE≌△BCD;
(2).
(本小题满分11分)
如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.
(1)请判断:AF与BE的数量关系是 ,位置关系是 ;
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
如图,两个全等的△和△重叠在一起,固定△,将△进行如下变换:
(1)如图1,△沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出与的关系;
(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△应满足什么条件?请给出证明;
(3)在(2)的条件下,将△沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你在图3的位置画出图形,并求出的值.
(1)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.
(2)列方程(组)或不等式(组)解应用题:2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).
若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?
如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)
(参考数据:)
小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?
如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)