中考真题分项汇编 第1期 专题13 操作性问题
如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为( )
A.6 | B.7 | C.8 | D.9 |
如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S⊿BEF=。在以上4个结论中,正确的有( )
A.1 | B.2 | C.3 | D.4 |
如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为( )
A.2 | B. | C. | D. |
如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是( )
A.创 | B.教 | C.强 | D.市 |
如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是 .
如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为 .
如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合.若AB=3,则C′D的长为 .
如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为 .
如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延 长交BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
小丽为了测旗杆AB的高度,小丽眼睛距地图1.5
米,小丽站在C点,测出旗杆A的仰角为30o,小丽向前走了10米到达点E,此时的仰角为
60o,求旗杆的高度。
如图1,水平放置一个三角板和一个量角器,三角
板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm开始的时候BD=1cm,现在
三角板以2cm/s的速度向右移动。
(1)当B与O重合的时候,求三角板运动的时间;
(2)如图2,当AC与半圆相切时,求AD;
(3)如图3,当AB和DE重合时,求证:=CG·CE.
如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线与的交点为P.
(1)如图1,当时,线段的长等于 ,线段的长等于 ;(直接填写结果)
(2)如图2,当时,求证:,且;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.
(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法);
(2)在(1)所作的图形中,求与的面积之比.
如图,已知△ABC.按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连结BD,与AC交于点E,连结AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC = 30°,∠BCA = 45°,AC = 4,求BE的长.
(为方便答题,可在答题卡上画出你认为必要的图形)
在Rt△ABC中,∠A=90°,AC =" AB" = 4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1 = CE1 ,且BD1⊥ CE1 ;
(3)求点P到AB所在直线的距离的最大值.(直接写出结果)
如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .