中考真题分项汇编 第1期 专题7 函数的图像、性质和应用问题
(南宁)如图,已知经过原点的抛物线的对称轴是直线,下列结论中:
①,‚②,ƒ③当.
正确的个数是( )
A.0个 | B.1个 | C.2个 | D.3个 |
(来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是( )
A. | B. | C. | D. |
(柳州)如图,点A(﹣2,1)到y轴的距离为( )
A.﹣2 | B.1 | C.2 | D. |
(柳州)如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是( )
A.x<﹣2 | B.﹣2<x<4 | C.x>0 | D.x>4 |
(钦州)对于函数,下列说法错误的是( )
A.这个函数的图象位于第一、第三象限 |
B.这个函数的图象既是轴对称图形又是中心对称图形 |
C.当x>0时,y随x的增大而增大 |
D.当x<0时,y随x的增大而减小 |
(玉林防城港)如图,反比例函数的图象经过二次函数图象的顶点(,m)(m>0),则有( )
A. | B. | C. | D. |
(百色)已知函数,当x=2时,函数值y为( )
A.5 | B.6 | C.7 | D.8 |
(北海)正比例函数的图象如图所示,则k的取值范围是( )
A.k>0 | B.k<0 | C.k>1 | D.k<1 |
(北海)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )
A.(4,8) | B.(5,8) | C.(,) | D.(,) |
(崇左)若反比例函数的图象经过点(2,-6),则k的值为( )
A.-12 | B.12 | C.-3 | D.3 |
(贵港)如图,已知二次函数的图象与正比例函数的图象交于点A(3,2),与x轴交于点B(2,0),若,则x的取值范围是( )
A.0<x<2 | B.0<x<3 | C.2<x<3 | D.x<0或x>3 |
(桂林)如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. | B. | C. | D. |
(河池)将抛物线向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( )
A. | B. | C. | D. |
(河池)反比例函数()的图象与一次函数的图象交于A,B两点,其中A(1,2),当时,x的取值范围是( )
A.x<1 | B.1<x<2 | C.x>2 | D.x<1或x>2 |
(河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 B.8 C.10 D.12
(南宁)如图,点A在双曲线()上,点B在双曲线()上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .
(钦州)一次函数()的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 象限.
(钦州)如图,以O为位似中心,将边长为256的正方形OABC依次作位似变化,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,......,按此规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n= .
(北海)如图,直线与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .
(贵港)如图,已知点A1,A2,…,An均在直线上,点B1,B2,…,Bn均在双曲线上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若,则a2015= .
(桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是 .
(贺州)已知二次函数的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,)和(,)在该图象上,则.其中正确的结论是 (填入正确结论的序号).
(南宁)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.
(1)用含a的式子表示花圃的面积.
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.
(3)已知某园林公司修建通道、花圃的造价(元)、(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
(南宁)在平面直角坐标系中,已知A、B是抛物线()上两个不同的点,其中A在第二象限,B在第一象限,
(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A.B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在(2)的条件下,若直线分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.
(来宾)过点(0,﹣2)的直线:()与直线:交于点P(2,m).
(1)写出使得的x的取值范围;
(2)求点P的坐标和直线的解析式.
(来宾)在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N.
(1)求证:△CMN∽△BAM;
(2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值;
(3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.
(柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数()的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?
(柳州)如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.
(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;
(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;
(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.
(钦州)抛物线与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点C在反比例函数()的图象上,求反比例函数的解析式.
(梧州)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.
(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.
(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?
(梧州)如图,抛物线与坐标轴交于A、B、C三点,其中B(4,0)、C(﹣2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交AB于点F.
(1)求此抛物线的解析式;
(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,求G点的横坐标;
(3)过D点作直线DH∥AC交AB于H,当△DHF的面积最大时,在抛物线和直线AB上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N两点的横坐标.
(玉林防城港)某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
(玉林防城港)已知:一次函数的图象与反比例函数()的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.
(百色)如图,反比例函数的图象与一次函数的图象交于M(1,3),N两点,点N的横坐标为﹣3.
(1)根据图象信息可得关于x的方程的解为 ;
(2)求一次函数的解析式.
(百色)抛物线经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度.
(1)求抛物线与x轴的交点坐标;
(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由;
(3)问几秒钟时,B、D、E在同一条直线上?
(北海)如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.
(1)直接写出D点和E点的坐标;
(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6?
(3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
(崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A、B两点.
(1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__);
(2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切;
(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.
(贵港)如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).
(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;
②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.
(2)请写出直线B1C1与直线B2C2的交点坐标.
(贵港)如图,一次函数的图象与反比例函数的图象交于点A和点B(﹣2,n),与x轴交于点C(﹣1,0),连接OA.
(1)求一次函数和反比例函数的解析式;
(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.
(贵港)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
(桂林)如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)直接写出抛物线的解析式: ;
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.
(河池)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
(河池)如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.