中考真题分项汇编 第1期 专题11 圆问题
如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为
△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是( )
A.80° | B.160° | C.100° | D.80°或100° |
如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=( )
A.80° B.90° C.100° D.无法确定
如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )
A. | B. | C. | D. |
(贵州省安顺市)如上图⊙O的直径垂直于弦,垂足是,,,的长为( )
A. | B.4 | C. | D.8 |
(黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为 .
(黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于( )
A.150° B.130° C.155° D.135°
(贵州六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R= 米.
(本小题5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦,且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)。
如图,已知在△ABC中,∠A=90°,
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60°,AB=3,求⊙P的面积.
已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(要求写出两种情况): 或者 .
(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
(内蒙古 呼 和 浩 特 )以下四个命题:
①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补.
②边数相等的两个正多边形一定相似.
③等腰三角形ABC中, D是底边BC上一点, E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°.
④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.
其中正确命题的序号为__________.
(贵州六盘水)(本小题12分)如图,在Rt△ACB中,∠ACB=90°,点O是AC边上的一点,以O为圆心,OC为半径的圆与AB相切于点D,连接OD.
(1)△ADO∽△ACB.
(2)若⊙O的半径为1,求证:AC=AD·BC
(内蒙古 呼 和 浩 特 )如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P,求证:
(黔西南州)如图所示,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1)求证:直线PB与⊙O相切
(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.
(贵州省安顺市)(本题12分)
如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求的值.
(年 呼 和 浩 特 市)如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P,求证: