湖北武汉华中师大一附等高三上第一次联考文数学卷
欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
已知,命题,,则( )
A.是假命题, |
B.是假命题, |
C.是真命题, |
D.是真命题, |
设是等差数列,是其前项和,且,,则下列结论错误的是( )
A. | B. | C. | D.与均为的最大值 |
要得到函数的图象,只需将函数的图象( )
A.向左平移个单位长度 |
B.向右平移个单位长度 |
C.向左平移个单位长度 |
D.向右平移个单位长度 |
已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的表面积等于( )
A. | B. |
C. | D. |
点从点出发,按逆时针方向沿周长为的图形运动一周,两点连线的距离与点走过的路程的函数关系如图,那么点所走的图形是( )
埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如,可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分解:,,,按此规律, ; .
在等比数列中,公比,,前三项和.
(1)求数列的通项公式;
(2)设,,求数列的前项和.
如图,在平面直角坐标系中,,,.
(1)求的面积;
(2)若函数的图象经过、、三点,且、为的图象与轴相邻的两个交点,求的解析式.
如图,已知长方形中,,,为的中点.将沿折起,使得平面平面.
(1)求证:;
(2)若点是线段上的一动点,问点在何位置时,三棱锥的体积与四棱锥的体积之比为?
小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系,轴在地平面上的球场中轴线上,轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程表示的曲线上,其中与发射方向有关.发射器的射程是指网球落地点的横坐标.
(1)求发射器的最大射程;
(2)请计算在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标最大为多少?并请说明理由.
已知函数.
(1)若直线与的反函数的图象相切,求实数的值;
(2)若,讨论函数零点的个数.
选修4-1 几何证明选讲
如图,是圆的直径,点在弧上,点为弧的中点,作于点,与交于点,与交于点.
(1)证明:;
(2)若,,求圆的半径.
选修4-4 极坐标与参数方程
已知曲线的极坐标方程为,曲线(为参数).
(1)求曲线的普通方程;
(2)若点在曲线上运动,试求出到曲线的距离的最小值.