2018年山西省中考数学试卷
"算经十书"是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是
A. |
《九章算术》 |
B. |
《几何原本》 |
C. |
《海岛算经》 |
D. |
《周髀算经》 |
近年来快递业发展迅速,下表是2018年 月份我省部分地市邮政快递业务量的统计结果(单位:万件)
太原市 |
大同市 |
长治市 |
晋中市 |
运城市 |
临汾市 |
吕梁市 |
3303.78 |
332.68 |
302.34 |
319.79 |
725.86 |
416.01 |
338.87 |
月份我省这七个地市邮政快递业务量的中位数是
A. |
319.79万件 |
B. |
332.68万件 |
C. |
338.87万件 |
D. |
416.01万件 |
黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米 秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为
A. |
立方米 时 |
B. |
立方米 时 |
C. |
立方米 时 |
D. |
立方米 时 |
在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , , ,将 绕点 按逆时针方向旋转得到△ ,此时点 恰好在 边上,则点 与点 之间的距离为
A. |
12 |
B. |
6 |
C. |
|
D. |
|
如图,正方形 内接于 , 的半径为2,以点 为圆心,以 长为半径画弧交 的延长线于点 ,交 的延长线于点 ,则图中阴影部分的面积为
A. |
|
B. |
|
C. |
|
D. |
|
图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则 度.
2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过.某厂家生产符合该规定的行李箱.已知行李箱的宽为,长与高的比为,则符合此规定的行李箱的高的最大值为 .
如图,直线,直线分别与,相交于点,.小宇同学利用尺规按以下步骤作图:①以点为圆心,以任意长为半径作弧交于点,交于点;②分别以,为圆心,以大于长为半径作弧,两弧在内交于点;③作射线交于点.若,,则线段的长为 .
如图,一次函数的图象分别与轴,轴相交于点,,与反比例函数的图象相交于点,.
(1)求一次函数和反比例函数的表达式;
(2)当为何值时,;
(3)当为何值时,,请直接写出的取值范围.
在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:
(1)请补全条形统计图和扇形统计图;
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?
(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?
(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.
项目 |
内容 |
||
课题 |
测量斜拉索顶端到桥面的距离 |
||
测量示意图 |
说明:两侧最长斜拉索,相交于点,分别与桥面交于,两点,且点,,在同一竖直平面内. |
||
测量数据 |
的度数 |
的度数 |
的长度 |
234米 |
|||
(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点到的距离(参考数据:,,,,,
(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).
2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南北京西”全程大约500千米,“复兴号” 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号” 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号” 次列车从太原南到北京西需要多长时间.
请阅读下列材料,并完成相应的任务:
在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形的和两边上分别取一点和,使得.(如图)解决这个问题的操作步骤如下: 第一步,在上作出一点,使得,连接.第二步,在上取一点,作,交于点,并在上取一点,使.第三步,过点作,交于点.第四步,过点作,交于点,再过点作,交于点. 则有. 下面是该结论的部分证明: 证明:,, 又.△. . 同理可得.. ,. |
任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形的形状,并加以证明;
(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成的证明过程;
(3)上述解决问题的过程中,通过作平行线把四边形放大得到四边形,从而确定了点,的位置,这里运用了下面一种图形的变化是 .
.平移 .旋转 .轴对称 .位似
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.