2016年福建省漳州市中考数学试卷
下列计算正确的是
A.a2+a2=a4B.a6÷a2=a4C.(a2)3=a5D.(a-b)2=a2-b2
上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是
1 |
2 |
3 |
4 |
5 |
|
成绩 |
8.2 |
8.0 |
8.2 |
7.5 |
7.8 |
A.8.2,8.2B.8.0,8.2C.8.2,7.8D.8.2,8.0
掷一枚质地均匀的硬币10次,下列说法正确的是
A.每2次必有1次正面向上B.必有5次正面向上
C.可能有7次正面向上D.不可能有10次正面向上
如图,在中,,,是线段上的动点(不含端点、.若线段长为正整数,则点的个数共有
A.5个B.4个C.3个D.2个
一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为 分.
班级 |
人数 |
平均分 |
(1)班 |
52 |
85 |
(2)班 |
48 |
80 |
如图,点A、B是双曲线 上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 .
如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是 .
先化简(a+1)(a-1)+a(1-a)-a,再根据化简结果,你发现该代数式的值与的取值有什么关系?(不必说理).
如图,BD是▱ABCD的对角线,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F.
(1)补全图形,并标上相应的字母;
(2)求证:AE=CF.
国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:
(1)此次抽查的学生数为 人;
(2)补全条形统计图;
(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是 ;
(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有 人.
如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图.已知长方体货厢的高度 , 现把图中的货物继续往前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,求BD的长.(结果保留根号)
某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).
运行区间 |
成人票价(元张) |
学生票价(元张) |
||
出发站 |
终点站 |
一等座 |
二等座 |
二等座 |
南靖 |
厦门 |
26 |
22 |
16 |
若师生均购买二等座票,则共需1020元.
(1)参加活动的教师有 人,学生有 人;
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有人,购买一、二等座票全部费用为元.
①求关于的函数关系式;
②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?
如图,AB为⊙O的直径,点E在⊙O上,C为 的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2, ,求AB的长.
如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)