2018年广西北海市中考数学试卷
2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为
A. B. C. D.
某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为
A.7分B.8分C.9分D.10分
如图,分别以等边三角形 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若 ,则莱洛三角形的面积(即阴影部分面积)为
A. B. C. D.
某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为 ,则可列方程为
A. B.
C. D.
如图,矩形纸片 , , ,点 在 边上,将 沿 折叠,点 落在点 处, 、 分别交 于点 、 ,且 ,则 的值为
A. B. C. D.
如图,从甲楼底部 处测得乙楼顶部 处的仰角是 ,从甲楼顶部 处测得乙楼底部 处的俯角是 ,已知甲楼的高 是 ,则乙楼的高 是 (结果保留根号)
如图,矩形 的顶点 , 在 轴上,且关于 轴对称,反比例函数 的图象经过点 ,反比例函数 的图象分别与 , 交于点 , ,若 , ,则 等于 .
如图,在平面直角坐标系中,已知 的三个顶点坐标分别是 , , .
(1)将 向下平移5个单位后得到△ ,请画出△ ;
(2)将 绕原点 逆时针旋转 后得到△ ,请画出△ ;
(3)判断以 , , 为顶点的三角形的形状.(无须说明理由)
某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按 , , , 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:
成绩等级 |
频数(人数) |
频率 |
|
4 |
0.04 |
|
|
0.51 |
|
|
|
|
||
合计 |
100 |
1 |
(1)求 , ;
(2)在扇形统计图中,求“ 等级”所对应圆心角的度数;
(3)成绩等级为 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.
某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的 ,乙仓库所存原料的 ,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.
(1)求甲、乙两仓库各存放原料多少吨?
(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元 吨和100元 吨.经协商,从甲仓库到工厂的运价可优惠 元 吨 ,从乙仓库到工厂的运价不变,设从甲仓库运 吨原料到工厂,请求出总运费 关于 的函数解析式(不要求写出 的取值范围);
(3)在(2)的条件下,请根据函数的性质说明:随着 的增大, 的变化情况.
如图, 内接于 , , 为直径, 与 相交于点 ,过点 作 ,垂足为 ,延长 交 的延长线于点 ,连接 .
(1)求证: 与 相切;
(2)若 ,求 的值;
(3)在(2)的条件下,若 的半径为8, ,求 的长.